Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

Detalhes bibliográficos
Autor(a) principal: Barsi,F. V.
Data de Publicação: 2009
Outros Autores: Cardoso,D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000200012
Resumo: Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt) and bimetallic catalysts (Pt-Ni), using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH3)6]Cl2 and [Pt(NH3)4]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR) and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.
id ABEQ-1_bb9b671b64c148bb0e7be3dee1ba685e
oai_identifier_str oai:scielo:S0104-66322009000200012
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerizationIsomerizationBifunctional bimetallic catalystsUSY zeoliteIsomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt) and bimetallic catalysts (Pt-Ni), using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH3)6]Cl2 and [Pt(NH3)4]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR) and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.Brazilian Society of Chemical Engineering2009-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000200012Brazilian Journal of Chemical Engineering v.26 n.2 2009reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322009000200012info:eu-repo/semantics/openAccessBarsi,F. V.Cardoso,D.eng2009-06-23T00:00:00Zoai:scielo:S0104-66322009000200012Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2009-06-23T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization
title Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization
spellingShingle Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization
Barsi,F. V.
Isomerization
Bifunctional bimetallic catalysts
USY zeolite
title_short Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization
title_full Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization
title_fullStr Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization
title_full_unstemmed Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization
title_sort Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization
author Barsi,F. V.
author_facet Barsi,F. V.
Cardoso,D.
author_role author
author2 Cardoso,D.
author2_role author
dc.contributor.author.fl_str_mv Barsi,F. V.
Cardoso,D.
dc.subject.por.fl_str_mv Isomerization
Bifunctional bimetallic catalysts
USY zeolite
topic Isomerization
Bifunctional bimetallic catalysts
USY zeolite
description Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt) and bimetallic catalysts (Pt-Ni), using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH3)6]Cl2 and [Pt(NH3)4]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR) and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.
publishDate 2009
dc.date.none.fl_str_mv 2009-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000200012
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000200012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322009000200012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.26 n.2 2009
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213172763426816