Band Structure in Carbon Nanostructure Phononic Crystals

Detalhes bibliográficos
Autor(a) principal: Miranda Júnior,Edson Jansen Pedrosa de
Data de Publicação: 2017
Outros Autores: Santos,José Maria Campos Dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800555
Resumo: We investigate the band structure of elastic waves propagating in carbon nanostructure phononic crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a isotropic solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all types of carbon nanostructures. The best performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure phononic crystals are feasible for elastic vibration management in GHz.
id ABMABCABPOL-1_9c9fd340a8b72dcc482c5d96fdbc12b0
oai_identifier_str oai:scielo:S1516-14392017000800555
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Band Structure in Carbon Nanostructure Phononic Crystalscarbon nanostructure phononic crystalband structureplane wave expansion methodcomplete band gapsvibration controlWe investigate the band structure of elastic waves propagating in carbon nanostructure phononic crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a isotropic solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all types of carbon nanostructures. The best performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure phononic crystals are feasible for elastic vibration management in GHz.ABM, ABC, ABPol2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800555Materials Research v.20 suppl.2 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2016-0898info:eu-repo/semantics/openAccessMiranda Júnior,Edson Jansen Pedrosa deSantos,José Maria Campos Doseng2018-04-12T00:00:00Zoai:scielo:S1516-14392017000800555Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-04-12T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Band Structure in Carbon Nanostructure Phononic Crystals
title Band Structure in Carbon Nanostructure Phononic Crystals
spellingShingle Band Structure in Carbon Nanostructure Phononic Crystals
Miranda Júnior,Edson Jansen Pedrosa de
carbon nanostructure phononic crystal
band structure
plane wave expansion method
complete band gaps
vibration control
title_short Band Structure in Carbon Nanostructure Phononic Crystals
title_full Band Structure in Carbon Nanostructure Phononic Crystals
title_fullStr Band Structure in Carbon Nanostructure Phononic Crystals
title_full_unstemmed Band Structure in Carbon Nanostructure Phononic Crystals
title_sort Band Structure in Carbon Nanostructure Phononic Crystals
author Miranda Júnior,Edson Jansen Pedrosa de
author_facet Miranda Júnior,Edson Jansen Pedrosa de
Santos,José Maria Campos Dos
author_role author
author2 Santos,José Maria Campos Dos
author2_role author
dc.contributor.author.fl_str_mv Miranda Júnior,Edson Jansen Pedrosa de
Santos,José Maria Campos Dos
dc.subject.por.fl_str_mv carbon nanostructure phononic crystal
band structure
plane wave expansion method
complete band gaps
vibration control
topic carbon nanostructure phononic crystal
band structure
plane wave expansion method
complete band gaps
vibration control
description We investigate the band structure of elastic waves propagating in carbon nanostructure phononic crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a isotropic solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all types of carbon nanostructures. The best performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure phononic crystals are feasible for elastic vibration management in GHz.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800555
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800555
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2016-0898
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.20 suppl.2 2017
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212671964577792