Total Mass TCI driven by Parametric Estimation

Detalhes bibliográficos
Autor(a) principal: Margarida M Silva
Data de Publicação: 2009
Outros Autores: Claudia Sousa, Raquel Sebastiao, Joao Gama, Teresa Mendonca, Paula Rocha, Simao Esteves
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://repositorio-aberto.up.pt/handle/10216/71245
Resumo: This paper presents the Total Mass Target Controlled Infusion algorithm. The system comprises an On Line tuned Algorithm for Recovery Detection (OLARD) after an initial bolus administration and a Bayesian identification method for parametric estimation based on sparse measurements of the accessible signal. To design the drug dosage profile, two algorithms are here proposed. During the transient phase, an Input Variance Control (IVC) algorithm is used. It is based on the concept of TCI and aims to steer the drug effect to a predefined target value within an a priori fixed interval of time. After the steady state phase is reached the drug dose regimen is controlled by a Total Mass Control (TMC) algorithm. The mass control law for compartmental systems is robust even in the presence of parameter uncertainties. The whole system feasibility has been evaluated for the case of Neuromuscular Blockade (NMB) level and was tested both in simulation and in real cases.