Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures

Detalhes bibliográficos
Autor(a) principal: Araujo, Clodoaldo Irineu Levartoski de
Data de Publicação: 2018
Outros Autores: Khan, Rajwali, Zulfiqar, Khan, Tahirzeb, Rahman, Muneeb Ur, Rehman, Zia Ur, Khan, Aurangzeb, Ullah, Burhan, Fashu, Simbarashe
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1007/s10854-018-9018-z
http://www.locus.ufv.br/handle/123456789/22091
Resumo: We analysed the variation and effect of oxygen vacancies on the structural, dielectric and magnetic properties in case of Mn (4%) and Co (1, 2 and 4%) co-doped ZnO nanoparticles (NPs), synthesized by chemical precipitation route and annealed at 750 °C for 2 h. From the XRD, the calculated average crystallite size increased from15.30 ± 0.73 nm to 16.71 ± 012 nm, when Co content is increased from 1 to 4%. Enhancement of dopants (Mn, Co) introduced more and more oxygen vacancies to ZnO lattice confirmed from EDX and XPS. The high-temperature annealing leads to reduction of the dielectric properties due to enhancement in grain growth (large grain volume and lesser number of grain boundaries) with the incorporation of Co and Mn ions into the ZnO lattice. The electrical conductivity of the Mn doped and (Mn, Co) co-doped ZnO samples were enhanced due to increase in the volume of conducting grains and charge density (liberation of trapped charge carriers in oxygen vacancies and free charge carriers at higher frequencies). The Mn-doped and (Mn, Co) co-doped ZnO NPs show ferromagnetic (FM) behaviour. The saturation and remnant magnetizations (Ms and Mr) elevates from (0.235 to 1.489) × 10−2 and (0.12 to 0.27) × 10−2 emu/g while Coercivity (Hc) reduced from 97 to 36 Oe with enhancement in the concentration of dopants in ZnO matrix. Oxygen vacancies were found to be the main reason for room-temperature ferromagnetism (RTFM) in the doped and co-doped ZnO NPs. The results show that the enhanced dielectric and magnetic properties of Mn doped and (Mn, Co) co-doped ZnO is strongly correlated with the concentration of oxygen vacancies. The observed enhanced RTFM, dielectric properties and electrical conductivity makes TM doped ZnO nanoparticles suitable for spintronics, microelectronics and optoelectronics based applications.
id UFV_ce76a440ce5eeb2143dbf3ce95b57f7e
oai_identifier_str oai:locus.ufv.br:123456789/22091
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Araujo, Clodoaldo Irineu Levartoski deKhan, RajwaliZulfiqarKhan, TahirzebRahman, Muneeb UrRehman, Zia UrKhan, AurangzebUllah, BurhanFashu, Simbarashe2018-10-01T12:03:15Z2018-10-01T12:03:15Z2018-061573-482Xhttps://doi.org/10.1007/s10854-018-9018-zhttp://www.locus.ufv.br/handle/123456789/22091We analysed the variation and effect of oxygen vacancies on the structural, dielectric and magnetic properties in case of Mn (4%) and Co (1, 2 and 4%) co-doped ZnO nanoparticles (NPs), synthesized by chemical precipitation route and annealed at 750 °C for 2 h. From the XRD, the calculated average crystallite size increased from15.30 ± 0.73 nm to 16.71 ± 012 nm, when Co content is increased from 1 to 4%. Enhancement of dopants (Mn, Co) introduced more and more oxygen vacancies to ZnO lattice confirmed from EDX and XPS. The high-temperature annealing leads to reduction of the dielectric properties due to enhancement in grain growth (large grain volume and lesser number of grain boundaries) with the incorporation of Co and Mn ions into the ZnO lattice. The electrical conductivity of the Mn doped and (Mn, Co) co-doped ZnO samples were enhanced due to increase in the volume of conducting grains and charge density (liberation of trapped charge carriers in oxygen vacancies and free charge carriers at higher frequencies). The Mn-doped and (Mn, Co) co-doped ZnO NPs show ferromagnetic (FM) behaviour. The saturation and remnant magnetizations (Ms and Mr) elevates from (0.235 to 1.489) × 10−2 and (0.12 to 0.27) × 10−2 emu/g while Coercivity (Hc) reduced from 97 to 36 Oe with enhancement in the concentration of dopants in ZnO matrix. Oxygen vacancies were found to be the main reason for room-temperature ferromagnetism (RTFM) in the doped and co-doped ZnO NPs. The results show that the enhanced dielectric and magnetic properties of Mn doped and (Mn, Co) co-doped ZnO is strongly correlated with the concentration of oxygen vacancies. The observed enhanced RTFM, dielectric properties and electrical conductivity makes TM doped ZnO nanoparticles suitable for spintronics, microelectronics and optoelectronics based applications.engJournal of Materials Science: Materials in ElectronicsVolume 29, Issue 12, p. 9785–9795, June 2018Springer USinfo:eu-repo/semantics/openAccessOxygen vacanciesStructuralDielectricMagnetic properties(Mn, Co) co-doped ZnO nanostructuresInfluence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf2736162https://locus.ufv.br//bitstream/123456789/22091/1/artigo.pdf6de53c6f1942caf124712245eba28575MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22091/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4644https://locus.ufv.br//bitstream/123456789/22091/3/artigo.pdf.jpgc42e84c26916634b9ff37eac1f09c79cMD53123456789/220912018-10-01 23:00:43.363oai:locus.ufv.br:123456789/22091Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-10-02T02:00:43LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures
title Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures
spellingShingle Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures
Araujo, Clodoaldo Irineu Levartoski de
Oxygen vacancies
Structural
Dielectric
Magnetic properties
(Mn, Co) co-doped ZnO nanostructures
title_short Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures
title_full Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures
title_fullStr Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures
title_full_unstemmed Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures
title_sort Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures
author Araujo, Clodoaldo Irineu Levartoski de
author_facet Araujo, Clodoaldo Irineu Levartoski de
Khan, Rajwali
Zulfiqar
Khan, Tahirzeb
Rahman, Muneeb Ur
Rehman, Zia Ur
Khan, Aurangzeb
Ullah, Burhan
Fashu, Simbarashe
author_role author
author2 Khan, Rajwali
Zulfiqar
Khan, Tahirzeb
Rahman, Muneeb Ur
Rehman, Zia Ur
Khan, Aurangzeb
Ullah, Burhan
Fashu, Simbarashe
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Araujo, Clodoaldo Irineu Levartoski de
Khan, Rajwali
Zulfiqar
Khan, Tahirzeb
Rahman, Muneeb Ur
Rehman, Zia Ur
Khan, Aurangzeb
Ullah, Burhan
Fashu, Simbarashe
dc.subject.pt-BR.fl_str_mv Oxygen vacancies
Structural
Dielectric
Magnetic properties
(Mn, Co) co-doped ZnO nanostructures
topic Oxygen vacancies
Structural
Dielectric
Magnetic properties
(Mn, Co) co-doped ZnO nanostructures
description We analysed the variation and effect of oxygen vacancies on the structural, dielectric and magnetic properties in case of Mn (4%) and Co (1, 2 and 4%) co-doped ZnO nanoparticles (NPs), synthesized by chemical precipitation route and annealed at 750 °C for 2 h. From the XRD, the calculated average crystallite size increased from15.30 ± 0.73 nm to 16.71 ± 012 nm, when Co content is increased from 1 to 4%. Enhancement of dopants (Mn, Co) introduced more and more oxygen vacancies to ZnO lattice confirmed from EDX and XPS. The high-temperature annealing leads to reduction of the dielectric properties due to enhancement in grain growth (large grain volume and lesser number of grain boundaries) with the incorporation of Co and Mn ions into the ZnO lattice. The electrical conductivity of the Mn doped and (Mn, Co) co-doped ZnO samples were enhanced due to increase in the volume of conducting grains and charge density (liberation of trapped charge carriers in oxygen vacancies and free charge carriers at higher frequencies). The Mn-doped and (Mn, Co) co-doped ZnO NPs show ferromagnetic (FM) behaviour. The saturation and remnant magnetizations (Ms and Mr) elevates from (0.235 to 1.489) × 10−2 and (0.12 to 0.27) × 10−2 emu/g while Coercivity (Hc) reduced from 97 to 36 Oe with enhancement in the concentration of dopants in ZnO matrix. Oxygen vacancies were found to be the main reason for room-temperature ferromagnetism (RTFM) in the doped and co-doped ZnO NPs. The results show that the enhanced dielectric and magnetic properties of Mn doped and (Mn, Co) co-doped ZnO is strongly correlated with the concentration of oxygen vacancies. The observed enhanced RTFM, dielectric properties and electrical conductivity makes TM doped ZnO nanoparticles suitable for spintronics, microelectronics and optoelectronics based applications.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-10-01T12:03:15Z
dc.date.available.fl_str_mv 2018-10-01T12:03:15Z
dc.date.issued.fl_str_mv 2018-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1007/s10854-018-9018-z
http://www.locus.ufv.br/handle/123456789/22091
dc.identifier.issn.none.fl_str_mv 1573-482X
identifier_str_mv 1573-482X
url https://doi.org/10.1007/s10854-018-9018-z
http://www.locus.ufv.br/handle/123456789/22091
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 29, Issue 12, p. 9785–9795, June 2018
dc.rights.driver.fl_str_mv Springer US
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Springer US
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Journal of Materials Science: Materials in Electronics
publisher.none.fl_str_mv Journal of Materials Science: Materials in Electronics
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22091/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22091/2/license.txt
https://locus.ufv.br//bitstream/123456789/22091/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 6de53c6f1942caf124712245eba28575
8a4605be74aa9ea9d79846c1fba20a33
c42e84c26916634b9ff37eac1f09c79c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1794528167495467008