Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000600915 |
Resumo: | Abstract Biosynthesis of titanium dioxide nanoparticles (TiO2NPs) by Sphingomonas paucimobilis B34 bacteria was successfully achieved and followed by UV-Vis spectroscopy. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR) techniques. The biosynthesized TiO2NPs were spherical in shape with an average particle size of 15.6 nm. These TiO2NPs were used as nono-catalyst for removing of malachite green (MG) dye (at 103 mol/L) from wastewater solution. As indicated by the results, the biosynthesized TiO2NPs represented a capable approach for MG removal with up to 83 % efficiency. The removal process was found to follow a pseudo-first-order kinetics. Furthermore, the developed TiO2NPs-MG hybrid nanocomposite was efficiently removed from the medium by using Spirulina platensis cyanobacterial biomass after wastewater treatment. S. platensis biomass was able to remove up to 89.43 % of the hybrid nanocomposite by a biosorption process. The resultant water effluent, after TiO2NPs-MG removal, showed no toxicity towards Vigna radiate L. seedlings implying its safety for agriculture purposes. According to the obtained results, S. platensis living biomass could play a dual re-cycling role, as natural biosorbent for removing both nanoparticles and dye (TiO2NPs-MG hybrid nano-composite) from solution after wastewater treatment for healthier environmental management. |
id |
ABC-1_b2658f2a7c9d2757df9c7c14dc857977 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652021000600915 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticlesSphingomonas paucimobilis B34Malachite green (MG)CytotoxicityVigna radiate LAbstract Biosynthesis of titanium dioxide nanoparticles (TiO2NPs) by Sphingomonas paucimobilis B34 bacteria was successfully achieved and followed by UV-Vis spectroscopy. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR) techniques. The biosynthesized TiO2NPs were spherical in shape with an average particle size of 15.6 nm. These TiO2NPs were used as nono-catalyst for removing of malachite green (MG) dye (at 103 mol/L) from wastewater solution. As indicated by the results, the biosynthesized TiO2NPs represented a capable approach for MG removal with up to 83 % efficiency. The removal process was found to follow a pseudo-first-order kinetics. Furthermore, the developed TiO2NPs-MG hybrid nanocomposite was efficiently removed from the medium by using Spirulina platensis cyanobacterial biomass after wastewater treatment. S. platensis biomass was able to remove up to 89.43 % of the hybrid nanocomposite by a biosorption process. The resultant water effluent, after TiO2NPs-MG removal, showed no toxicity towards Vigna radiate L. seedlings implying its safety for agriculture purposes. According to the obtained results, S. platensis living biomass could play a dual re-cycling role, as natural biosorbent for removing both nanoparticles and dye (TiO2NPs-MG hybrid nano-composite) from solution after wastewater treatment for healthier environmental management.Academia Brasileira de Ciências2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000600915Anais da Academia Brasileira de Ciências v.93 suppl.3 2021reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765202120201669info:eu-repo/semantics/openAccessISMAIL,GEHAN AHMEDALLAM,NANIS GAMALEL-GEMIZY,WALAA MOHAMMEDSALEM,MOHAMED AL-SAYEDeng2021-10-26T00:00:00Zoai:scielo:S0001-37652021000600915Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2021-10-26T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles |
title |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles |
spellingShingle |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles ISMAIL,GEHAN AHMED Sphingomonas paucimobilis B34 Malachite green (MG) Cytotoxicity Vigna radiate L |
title_short |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles |
title_full |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles |
title_fullStr |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles |
title_full_unstemmed |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles |
title_sort |
Potential role of Spirulina (Arthrospira) platensis biomass for removal of TiO2NPs -MG hybrid nanocomposite produced after wastewater treatment by TiO2 nanoparticles |
author |
ISMAIL,GEHAN AHMED |
author_facet |
ISMAIL,GEHAN AHMED ALLAM,NANIS GAMAL EL-GEMIZY,WALAA MOHAMMED SALEM,MOHAMED AL-SAYED |
author_role |
author |
author2 |
ALLAM,NANIS GAMAL EL-GEMIZY,WALAA MOHAMMED SALEM,MOHAMED AL-SAYED |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
ISMAIL,GEHAN AHMED ALLAM,NANIS GAMAL EL-GEMIZY,WALAA MOHAMMED SALEM,MOHAMED AL-SAYED |
dc.subject.por.fl_str_mv |
Sphingomonas paucimobilis B34 Malachite green (MG) Cytotoxicity Vigna radiate L |
topic |
Sphingomonas paucimobilis B34 Malachite green (MG) Cytotoxicity Vigna radiate L |
description |
Abstract Biosynthesis of titanium dioxide nanoparticles (TiO2NPs) by Sphingomonas paucimobilis B34 bacteria was successfully achieved and followed by UV-Vis spectroscopy. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR) techniques. The biosynthesized TiO2NPs were spherical in shape with an average particle size of 15.6 nm. These TiO2NPs were used as nono-catalyst for removing of malachite green (MG) dye (at 103 mol/L) from wastewater solution. As indicated by the results, the biosynthesized TiO2NPs represented a capable approach for MG removal with up to 83 % efficiency. The removal process was found to follow a pseudo-first-order kinetics. Furthermore, the developed TiO2NPs-MG hybrid nanocomposite was efficiently removed from the medium by using Spirulina platensis cyanobacterial biomass after wastewater treatment. S. platensis biomass was able to remove up to 89.43 % of the hybrid nanocomposite by a biosorption process. The resultant water effluent, after TiO2NPs-MG removal, showed no toxicity towards Vigna radiate L. seedlings implying its safety for agriculture purposes. According to the obtained results, S. platensis living biomass could play a dual re-cycling role, as natural biosorbent for removing both nanoparticles and dye (TiO2NPs-MG hybrid nano-composite) from solution after wastewater treatment for healthier environmental management. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000600915 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000600915 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765202120201669 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.93 suppl.3 2021 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302870791913472 |