High speed machining of aero-engine alloys

Detalhes bibliográficos
Autor(a) principal: Ezugwu,E. O.
Data de Publicação: 2004
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782004000100001
Resumo: Materials used in the manufacture of aero-engine components generally comprise of nickel and titanium base alloys. Advanced materials such as aero-engine alloys, structural ceramic and hardened steels provide serious challenges for cutting tool materials during machining due to their unique combinations of properties such as high temperature strength, hardness and chemical wear resistance. These materials are referred to as difficult-to-cut since they pose a greater challenge to manufacturing engineers due to the high temperatures and stresses generated during machining. The poor thermal conductivity of these alloys result in the concentration of high temperatures at the tool-workpiece and tool-chip interfaces, consequently accelerating tool wear and increasing manufacturing cost. The past decade has witnessed a radical approach to product manufacture, particularly in the developed economy, in order to remain competitive. Modern manufacturing philosophies, principles and techniques geared primarily towards reducing non value added activities and achieving step increase in product manufacture have been widely adopted. Recent advances in the machining of aero-engine alloys include dry machining at high speed conditions, the use of high pressure and/or ultra high pressure coolant supplies, minimum quantity lubrication, cryogenic machining and rotary (self-propelled) machining technique. Tool materials with improved hardness like cemented carbides (including coated carbides), ceramics, polycrystalline diamond and polycrystalline cubic boron nitride are the most frequently used for high speed machining of aero-engine alloys. These developments have resulted to significant improvement in the machining of aero-engine alloys without compromising the integrity of the machined surfaces. This paper will provide an overview on these recent developments and their application in the aerospace industry.
id ABCM-2_804a65659e460888e58e2dc32d37e884
oai_identifier_str oai:scielo:S1678-58782004000100001
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling High speed machining of aero-engine alloysNickel alloystitanium alloysself-propelled rotary toolinghigh pressure coolant supplyminimum quantity lubricationcryogenic coolingtool wearand temperature reductionMaterials used in the manufacture of aero-engine components generally comprise of nickel and titanium base alloys. Advanced materials such as aero-engine alloys, structural ceramic and hardened steels provide serious challenges for cutting tool materials during machining due to their unique combinations of properties such as high temperature strength, hardness and chemical wear resistance. These materials are referred to as difficult-to-cut since they pose a greater challenge to manufacturing engineers due to the high temperatures and stresses generated during machining. The poor thermal conductivity of these alloys result in the concentration of high temperatures at the tool-workpiece and tool-chip interfaces, consequently accelerating tool wear and increasing manufacturing cost. The past decade has witnessed a radical approach to product manufacture, particularly in the developed economy, in order to remain competitive. Modern manufacturing philosophies, principles and techniques geared primarily towards reducing non value added activities and achieving step increase in product manufacture have been widely adopted. Recent advances in the machining of aero-engine alloys include dry machining at high speed conditions, the use of high pressure and/or ultra high pressure coolant supplies, minimum quantity lubrication, cryogenic machining and rotary (self-propelled) machining technique. Tool materials with improved hardness like cemented carbides (including coated carbides), ceramics, polycrystalline diamond and polycrystalline cubic boron nitride are the most frequently used for high speed machining of aero-engine alloys. These developments have resulted to significant improvement in the machining of aero-engine alloys without compromising the integrity of the machined surfaces. This paper will provide an overview on these recent developments and their application in the aerospace industry.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2004-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782004000100001Journal of the Brazilian Society of Mechanical Sciences and Engineering v.26 n.1 2004reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782004000100001info:eu-repo/semantics/openAccessEzugwu,E. O.eng2004-05-19T00:00:00Zoai:scielo:S1678-58782004000100001Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2004-05-19T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv High speed machining of aero-engine alloys
title High speed machining of aero-engine alloys
spellingShingle High speed machining of aero-engine alloys
Ezugwu,E. O.
Nickel alloys
titanium alloys
self-propelled rotary tooling
high pressure coolant supply
minimum quantity lubrication
cryogenic cooling
tool wear
and temperature reduction
title_short High speed machining of aero-engine alloys
title_full High speed machining of aero-engine alloys
title_fullStr High speed machining of aero-engine alloys
title_full_unstemmed High speed machining of aero-engine alloys
title_sort High speed machining of aero-engine alloys
author Ezugwu,E. O.
author_facet Ezugwu,E. O.
author_role author
dc.contributor.author.fl_str_mv Ezugwu,E. O.
dc.subject.por.fl_str_mv Nickel alloys
titanium alloys
self-propelled rotary tooling
high pressure coolant supply
minimum quantity lubrication
cryogenic cooling
tool wear
and temperature reduction
topic Nickel alloys
titanium alloys
self-propelled rotary tooling
high pressure coolant supply
minimum quantity lubrication
cryogenic cooling
tool wear
and temperature reduction
description Materials used in the manufacture of aero-engine components generally comprise of nickel and titanium base alloys. Advanced materials such as aero-engine alloys, structural ceramic and hardened steels provide serious challenges for cutting tool materials during machining due to their unique combinations of properties such as high temperature strength, hardness and chemical wear resistance. These materials are referred to as difficult-to-cut since they pose a greater challenge to manufacturing engineers due to the high temperatures and stresses generated during machining. The poor thermal conductivity of these alloys result in the concentration of high temperatures at the tool-workpiece and tool-chip interfaces, consequently accelerating tool wear and increasing manufacturing cost. The past decade has witnessed a radical approach to product manufacture, particularly in the developed economy, in order to remain competitive. Modern manufacturing philosophies, principles and techniques geared primarily towards reducing non value added activities and achieving step increase in product manufacture have been widely adopted. Recent advances in the machining of aero-engine alloys include dry machining at high speed conditions, the use of high pressure and/or ultra high pressure coolant supplies, minimum quantity lubrication, cryogenic machining and rotary (self-propelled) machining technique. Tool materials with improved hardness like cemented carbides (including coated carbides), ceramics, polycrystalline diamond and polycrystalline cubic boron nitride are the most frequently used for high speed machining of aero-engine alloys. These developments have resulted to significant improvement in the machining of aero-engine alloys without compromising the integrity of the machined surfaces. This paper will provide an overview on these recent developments and their application in the aerospace industry.
publishDate 2004
dc.date.none.fl_str_mv 2004-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782004000100001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782004000100001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782004000100001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.26 n.1 2004
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734680094015488