Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers

Detalhes bibliográficos
Autor(a) principal: Rocha,Marisa Cristina Guimarães
Data de Publicação: 2015
Outros Autores: Moraes,Lorena Rodrigues da Costa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Polímeros (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282015000100006
Resumo: LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and impact properties are not determinant factors of their performance. LDPE based materials on GG present values of flexural and mechanical strength lower than those of LDPE/PHB blends. LDPE/PHB/GG blends exhibit unsatisfactory properties. Apparently, the effect of addition of GG to LDPE on the biodegradation behavior of LDPE/GG blends was less intense than the effect caused by addition of PHB to the blends. Similar observation has occurred with the partial replacement of GG by PHB in the ternary blends.
id ABPO-1_f13c98c2d0ffd5270fda28ea2d90a29e
oai_identifier_str oai:scielo:S0104-14282015000100006
network_acronym_str ABPO-1
network_name_str Polímeros (São Carlos. Online)
repository_id_str
spelling Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymersblendsguar gumlow density polyethylenemechanical propertiespoly (3-hydroxi-butyrate)LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and impact properties are not determinant factors of their performance. LDPE based materials on GG present values of flexural and mechanical strength lower than those of LDPE/PHB blends. LDPE/PHB/GG blends exhibit unsatisfactory properties. Apparently, the effect of addition of GG to LDPE on the biodegradation behavior of LDPE/GG blends was less intense than the effect caused by addition of PHB to the blends. Similar observation has occurred with the partial replacement of GG by PHB in the ternary blends.Associação Brasileira de Polímeros2015-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282015000100006Polímeros v.25 n.1 2015reponame:Polímeros (São Carlos. Online)instname:Associação Brasileira de Polímeros (ABPol)instacron:ABPO10.1590/0104-1428.1495info:eu-repo/semantics/openAccessRocha,Marisa Cristina GuimarãesMoraes,Lorena Rodrigues da Costaeng2015-04-08T00:00:00Zoai:scielo:S0104-14282015000100006Revistahttp://www.scielo.br/pohttps://old.scielo.br/oai/scielo-oai.php||revista@abpol.org.br1678-51690104-1428opendoar:2015-04-08T00:00Polímeros (São Carlos. Online) - Associação Brasileira de Polímeros (ABPol)false
dc.title.none.fl_str_mv Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers
title Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers
spellingShingle Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers
Rocha,Marisa Cristina Guimarães
blends
guar gum
low density polyethylene
mechanical properties
poly (3-hydroxi-butyrate)
title_short Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers
title_full Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers
title_fullStr Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers
title_full_unstemmed Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers
title_sort Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers
author Rocha,Marisa Cristina Guimarães
author_facet Rocha,Marisa Cristina Guimarães
Moraes,Lorena Rodrigues da Costa
author_role author
author2 Moraes,Lorena Rodrigues da Costa
author2_role author
dc.contributor.author.fl_str_mv Rocha,Marisa Cristina Guimarães
Moraes,Lorena Rodrigues da Costa
dc.subject.por.fl_str_mv blends
guar gum
low density polyethylene
mechanical properties
poly (3-hydroxi-butyrate)
topic blends
guar gum
low density polyethylene
mechanical properties
poly (3-hydroxi-butyrate)
description LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and impact properties are not determinant factors of their performance. LDPE based materials on GG present values of flexural and mechanical strength lower than those of LDPE/PHB blends. LDPE/PHB/GG blends exhibit unsatisfactory properties. Apparently, the effect of addition of GG to LDPE on the biodegradation behavior of LDPE/GG blends was less intense than the effect caused by addition of PHB to the blends. Similar observation has occurred with the partial replacement of GG by PHB in the ternary blends.
publishDate 2015
dc.date.none.fl_str_mv 2015-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282015000100006
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282015000100006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-1428.1495
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Polímeros
publisher.none.fl_str_mv Associação Brasileira de Polímeros
dc.source.none.fl_str_mv Polímeros v.25 n.1 2015
reponame:Polímeros (São Carlos. Online)
instname:Associação Brasileira de Polímeros (ABPol)
instacron:ABPO
instname_str Associação Brasileira de Polímeros (ABPol)
instacron_str ABPO
institution ABPO
reponame_str Polímeros (São Carlos. Online)
collection Polímeros (São Carlos. Online)
repository.name.fl_str_mv Polímeros (São Carlos. Online) - Associação Brasileira de Polímeros (ABPol)
repository.mail.fl_str_mv ||revista@abpol.org.br
_version_ 1754212589002293248