Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings

Detalhes bibliográficos
Autor(a) principal: Alsahlan,Ahmad Abdulkarim
Data de Publicação: 2017
Outros Autores: Rahulan,Thurai
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Aerospace Technology and Management (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462017000300335
Resumo: ABSTRACT In this paper, 12 new aerofoils with varying thicknesses for an aft-swept flying wing unmanned air vehicle have been designed using a MATLAB tool which has been developed in-house. The tool consists of 2 parts in addition to the aerodynamic solver XFOIL. The first part generates the aerofoil section geometry using a combination of PARSEC and Bezier-curve parameterisation functions. PARSEC parametrisation has been used to represent the camber line while the Bezier-curve has been used to select the thickness distribution. This combination is quite efficient in using an optimisation search process because of the capability to define a range of design variables that can quickly generate a suitable aerofoil. The second part contains the optimisation code using a genetic algorithm. The primary target here was to design a number of aerofoils with low pitching moment, suitable for an aft-swept flying wing configuration operating at low Reynolds number in the range of about 0.5 × 106. Three optimisation targets were set to achieve maximum aerodynamic performance characteristics. Each individual target was run separately to design several aerofoils of different thicknesses that meet the target criteria. According to the set of result obtained so far, the initial observation of the aerodynamic performance of the newly designed aerofoils is that the lift/drag ratio in general is higher than that of the existing ones used in many current-generation high-altitude long-endurance aircraft. Another observation is that increasing the maximum thickness of the aerofoil leads to a decrease in the maximum lift/drag ratio. In addition, as expected, this ratio sharply drops after the maximum value of some of these aerofoils.
id DCTA-1_caea709233cf0104e3a546b12a494898
oai_identifier_str oai:scielo:S2175-91462017000300335
network_acronym_str DCTA-1
network_name_str Journal of Aerospace Technology and Management (Online)
repository_id_str
spelling Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying WingsAerofoil designLow ReSwept flying wingABSTRACT In this paper, 12 new aerofoils with varying thicknesses for an aft-swept flying wing unmanned air vehicle have been designed using a MATLAB tool which has been developed in-house. The tool consists of 2 parts in addition to the aerodynamic solver XFOIL. The first part generates the aerofoil section geometry using a combination of PARSEC and Bezier-curve parameterisation functions. PARSEC parametrisation has been used to represent the camber line while the Bezier-curve has been used to select the thickness distribution. This combination is quite efficient in using an optimisation search process because of the capability to define a range of design variables that can quickly generate a suitable aerofoil. The second part contains the optimisation code using a genetic algorithm. The primary target here was to design a number of aerofoils with low pitching moment, suitable for an aft-swept flying wing configuration operating at low Reynolds number in the range of about 0.5 × 106. Three optimisation targets were set to achieve maximum aerodynamic performance characteristics. Each individual target was run separately to design several aerofoils of different thicknesses that meet the target criteria. According to the set of result obtained so far, the initial observation of the aerodynamic performance of the newly designed aerofoils is that the lift/drag ratio in general is higher than that of the existing ones used in many current-generation high-altitude long-endurance aircraft. Another observation is that increasing the maximum thickness of the aerofoil leads to a decrease in the maximum lift/drag ratio. In addition, as expected, this ratio sharply drops after the maximum value of some of these aerofoils.Departamento de Ciência e Tecnologia Aeroespacial2017-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462017000300335Journal of Aerospace Technology and Management v.9 n.3 2017reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v9i3.838info:eu-repo/semantics/openAccessAlsahlan,Ahmad AbdulkarimRahulan,Thuraieng2017-08-18T00:00:00Zoai:scielo:S2175-91462017000300335Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2017-08-18T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false
dc.title.none.fl_str_mv Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings
title Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings
spellingShingle Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings
Alsahlan,Ahmad Abdulkarim
Aerofoil design
Low Re
Swept flying wing
title_short Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings
title_full Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings
title_fullStr Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings
title_full_unstemmed Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings
title_sort Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings
author Alsahlan,Ahmad Abdulkarim
author_facet Alsahlan,Ahmad Abdulkarim
Rahulan,Thurai
author_role author
author2 Rahulan,Thurai
author2_role author
dc.contributor.author.fl_str_mv Alsahlan,Ahmad Abdulkarim
Rahulan,Thurai
dc.subject.por.fl_str_mv Aerofoil design
Low Re
Swept flying wing
topic Aerofoil design
Low Re
Swept flying wing
description ABSTRACT In this paper, 12 new aerofoils with varying thicknesses for an aft-swept flying wing unmanned air vehicle have been designed using a MATLAB tool which has been developed in-house. The tool consists of 2 parts in addition to the aerodynamic solver XFOIL. The first part generates the aerofoil section geometry using a combination of PARSEC and Bezier-curve parameterisation functions. PARSEC parametrisation has been used to represent the camber line while the Bezier-curve has been used to select the thickness distribution. This combination is quite efficient in using an optimisation search process because of the capability to define a range of design variables that can quickly generate a suitable aerofoil. The second part contains the optimisation code using a genetic algorithm. The primary target here was to design a number of aerofoils with low pitching moment, suitable for an aft-swept flying wing configuration operating at low Reynolds number in the range of about 0.5 × 106. Three optimisation targets were set to achieve maximum aerodynamic performance characteristics. Each individual target was run separately to design several aerofoils of different thicknesses that meet the target criteria. According to the set of result obtained so far, the initial observation of the aerodynamic performance of the newly designed aerofoils is that the lift/drag ratio in general is higher than that of the existing ones used in many current-generation high-altitude long-endurance aircraft. Another observation is that increasing the maximum thickness of the aerofoil leads to a decrease in the maximum lift/drag ratio. In addition, as expected, this ratio sharply drops after the maximum value of some of these aerofoils.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462017000300335
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462017000300335
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5028/jatm.v9i3.838
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
dc.source.none.fl_str_mv Journal of Aerospace Technology and Management v.9 n.3 2017
reponame:Journal of Aerospace Technology and Management (Online)
instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron:DCTA
instname_str Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron_str DCTA
institution DCTA
reponame_str Journal of Aerospace Technology and Management (Online)
collection Journal of Aerospace Technology and Management (Online)
repository.name.fl_str_mv Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
repository.mail.fl_str_mv ||secretary@jatm.com.br
_version_ 1754732531637288960