Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/22133 |
Resumo: | The objective of this work was to verify the agreement between artificial neural networks (ANNs) and the Eberhart & Russel method in identifying cowpea (Vigna unguiculata) genotypes with high phenotypic adaptability and stability. The experimental design was in a randomized complete block with four replicates. The treatments consisted of 18 experimental lines and two cowpea cultivars. Four value for cultivation and use trials were conducted in the municipalities of Aquidauana, Chapadão do Sul, and Dourados, in the state of Mato Grosso do Sul, Brazil. Grain yield data were subjected to individual and joint variance analyses. Then, the data were subjected to adaptability and stability analyses through the methods of Eberhart & Russell and ANNs. There was a high agreement between the methods evaluated for discrimination of the phenotypic adaptability of semi‑prostrate cowpea genotypes, indicating that ANNs can be used in breeding programs. In both evaluated methods, the BRS Xiquexique, TE97‑304G‑12, and MNC99‑542F‑5 genotypes are recommended for harsh, general, and favorable environments, respectively, for having grain yield above the overall average of environments and high phenotypic stability. |
id |
EMBRAPA-4_291901e8d4bd5aec687b464b4342701c |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/22133 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stabilityRedes neurais artificiais para identificar genótipos de feijão‑caupi semiprostrado com alta adaptabilidade e estabilidade fenotípicasVigna unguiculata; artificial intelligence; genotypes x environments interactionVigna unguiculata; inteligência artificial; interação genótipos x ambientesThe objective of this work was to verify the agreement between artificial neural networks (ANNs) and the Eberhart & Russel method in identifying cowpea (Vigna unguiculata) genotypes with high phenotypic adaptability and stability. The experimental design was in a randomized complete block with four replicates. The treatments consisted of 18 experimental lines and two cowpea cultivars. Four value for cultivation and use trials were conducted in the municipalities of Aquidauana, Chapadão do Sul, and Dourados, in the state of Mato Grosso do Sul, Brazil. Grain yield data were subjected to individual and joint variance analyses. Then, the data were subjected to adaptability and stability analyses through the methods of Eberhart & Russell and ANNs. There was a high agreement between the methods evaluated for discrimination of the phenotypic adaptability of semi‑prostrate cowpea genotypes, indicating that ANNs can be used in breeding programs. In both evaluated methods, the BRS Xiquexique, TE97‑304G‑12, and MNC99‑542F‑5 genotypes are recommended for harsh, general, and favorable environments, respectively, for having grain yield above the overall average of environments and high phenotypic stability.O objetivo deste trabalho foi verificar a concordância entre as redes neurais artificiais (RNAs) e o método de Eberhart & Russel na identificação de genótipos de feijão‑caupi (Vigna unguiculata) com alta adaptabilidade e estabilidade fenotípicas. Utilizou-se o delineamento experimental de blocos ao acaso com quatro repetições. Os tratamentos consistiram de 18 linhagens experimentais e duas cultivares de feijão‑caupi. Foram conduzidos quatro ensaios de valor de cultivo e uso nos municípios de Aquidauana, Chapadão do Sul e Dourados, no estado do Mato Grosso do Sul. Os dados de produtividade de grãos foram submetidos às análises de variância individual e conjunta. Em seguida, os dados foram submetidos às análises de adaptabilidade e estabilidade por meio dos métodos de Eberhart & Russell e de RNAs. Houve elevada concordância entre os métodos avaliados quanto à discriminação da adaptabilidade fenotípica dos genótipos de feijão‑caupi semiprostrado, o que indica que as RNAs podem ser utilizadas em programas de melhoramento genético. Em ambos os métodos avaliados, os genótipos BRS Xiquexique, TE97‑304G‑12 e MNC99‑542F‑5 são recomendados para ambientes desfavoráveis, gerais e favoráveis, respectivamente, por apresentarem produtividade de grãos acima da média geral dos ambientes e alta estabilidade fenotípica.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)Fundação Arthur Bernardes (Funarbe)Teodoro, Paulo EduardoBarroso, Laís Mayara AzevedoNascimento, MoysésTorres, Francisco EduardoSagrilo, EdvaldoSantos, Adriano dosRibeiro, Larissa Pereira2015-12-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/22133Pesquisa Agropecuaria Brasileira; v.50, n.11, nov. 2015; 1054-1060Pesquisa Agropecuária Brasileira; v.50, n.11, nov. 2015; 1054-10601678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/22133/13119https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/22133/14174Direitos autorais 2015 Pesquisa Agropecuária Brasileirainfo:eu-repo/semantics/openAccess2015-12-09T18:15:31Zoai:ojs.seer.sct.embrapa.br:article/22133Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2015-12-09T18:15:31Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability Redes neurais artificiais para identificar genótipos de feijão‑caupi semiprostrado com alta adaptabilidade e estabilidade fenotípicas |
title |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability |
spellingShingle |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability Teodoro, Paulo Eduardo Vigna unguiculata; artificial intelligence; genotypes x environments interaction Vigna unguiculata; inteligência artificial; interação genótipos x ambientes |
title_short |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability |
title_full |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability |
title_fullStr |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability |
title_full_unstemmed |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability |
title_sort |
Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability |
author |
Teodoro, Paulo Eduardo |
author_facet |
Teodoro, Paulo Eduardo Barroso, Laís Mayara Azevedo Nascimento, Moysés Torres, Francisco Eduardo Sagrilo, Edvaldo Santos, Adriano dos Ribeiro, Larissa Pereira |
author_role |
author |
author2 |
Barroso, Laís Mayara Azevedo Nascimento, Moysés Torres, Francisco Eduardo Sagrilo, Edvaldo Santos, Adriano dos Ribeiro, Larissa Pereira |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) Fundação Arthur Bernardes (Funarbe) |
dc.contributor.author.fl_str_mv |
Teodoro, Paulo Eduardo Barroso, Laís Mayara Azevedo Nascimento, Moysés Torres, Francisco Eduardo Sagrilo, Edvaldo Santos, Adriano dos Ribeiro, Larissa Pereira |
dc.subject.por.fl_str_mv |
Vigna unguiculata; artificial intelligence; genotypes x environments interaction Vigna unguiculata; inteligência artificial; interação genótipos x ambientes |
topic |
Vigna unguiculata; artificial intelligence; genotypes x environments interaction Vigna unguiculata; inteligência artificial; interação genótipos x ambientes |
description |
The objective of this work was to verify the agreement between artificial neural networks (ANNs) and the Eberhart & Russel method in identifying cowpea (Vigna unguiculata) genotypes with high phenotypic adaptability and stability. The experimental design was in a randomized complete block with four replicates. The treatments consisted of 18 experimental lines and two cowpea cultivars. Four value for cultivation and use trials were conducted in the municipalities of Aquidauana, Chapadão do Sul, and Dourados, in the state of Mato Grosso do Sul, Brazil. Grain yield data were subjected to individual and joint variance analyses. Then, the data were subjected to adaptability and stability analyses through the methods of Eberhart & Russell and ANNs. There was a high agreement between the methods evaluated for discrimination of the phenotypic adaptability of semi‑prostrate cowpea genotypes, indicating that ANNs can be used in breeding programs. In both evaluated methods, the BRS Xiquexique, TE97‑304G‑12, and MNC99‑542F‑5 genotypes are recommended for harsh, general, and favorable environments, respectively, for having grain yield above the overall average of environments and high phenotypic stability. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-09 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/22133 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/22133 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/22133/13119 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/22133/14174 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2015 Pesquisa Agropecuária Brasileira info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2015 Pesquisa Agropecuária Brasileira |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.50, n.11, nov. 2015; 1054-1060 Pesquisa Agropecuária Brasileira; v.50, n.11, nov. 2015; 1054-1060 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416701653549056 |