Factors associated with readmission to a general hospital in Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cadernos de Saúde Pública |
Texto Completo: | https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/2501 |
Resumo: | The objective of this study was to compare different modeling strategies to identify individual and admissions characteristics associated with readmission to a general hospital. Routine data recorded in the Hospital Information System on all admissions to the Regional Public Hospital of Betim, Minas Gerais State, Brazil, from July 1996 to June 2000 were analyzed. Cox proportional hazards model and variants designed to deal with multiple-events data, like Andersen-Gill (AG), Prentice, Williams and Peterson (PWP), and random effects models were fitted to time between hospital admissions or censoring. For comparison purposes, a Poisson model was fitted to the total number of readmissions, using the same covariates. We analyzed 31,648 admissions of 26,198 patients, including 17,096 adults and 9,102 children. Estimates for the PWP and frailty models were very similar, and both approaches should be fitted and compared. If clinical characteristics are available, the PWP model should be used. Otherwise the random effects model can account for unmeasured differences, particularly some related to severity of the disease. These methodologies can help focus on various related readmission aspects such as diagnostic groups or medical specialties. |
id |
FIOCRUZ-5_550879f31f9558be3705534f2c977c4b |
---|---|
oai_identifier_str |
oai:ojs.teste-cadernos.ensp.fiocruz.br:article/2501 |
network_acronym_str |
FIOCRUZ-5 |
network_name_str |
Cadernos de Saúde Pública |
repository_id_str |
|
spelling |
Factors associated with readmission to a general hospital in BrazilGeneral HospitalsHospital ReadmissionSurvival AnalysisThe objective of this study was to compare different modeling strategies to identify individual and admissions characteristics associated with readmission to a general hospital. Routine data recorded in the Hospital Information System on all admissions to the Regional Public Hospital of Betim, Minas Gerais State, Brazil, from July 1996 to June 2000 were analyzed. Cox proportional hazards model and variants designed to deal with multiple-events data, like Andersen-Gill (AG), Prentice, Williams and Peterson (PWP), and random effects models were fitted to time between hospital admissions or censoring. For comparison purposes, a Poisson model was fitted to the total number of readmissions, using the same covariates. We analyzed 31,648 admissions of 26,198 patients, including 17,096 adults and 9,102 children. Estimates for the PWP and frailty models were very similar, and both approaches should be fitted and compared. If clinical characteristics are available, the PWP model should be used. Otherwise the random effects model can account for unmeasured differences, particularly some related to severity of the disease. These methodologies can help focus on various related readmission aspects such as diagnostic groups or medical specialties.O objetivo foi comparar diferentes métodos de análise de sobrevivência para identificação de características associadas a uma maior chance de reinternação em um grande hospital geral. Foram analisadas as internações do Hospital Público Regional de Betim, Minas Gerais, Brasil, de julho de 1996 a junho de 2000, excluindo internações apenas em obstetrícia e os óbitos na primeira internação. Foram utilizados os modelos de Cox; Andersen-Gill (AG); Prentice, Williams e Peterson (PWP) e de efeitos aleatórios, tendo o tempo entre as internações ou até o óbito ou até o final do período de observação como variável resposta. Um modelo de Poisson para o número de internações foi ajustado para efeitos comparativos. Considerando os resultados bastante próximos dos modelos PWP e de fragilidade, recomenda-se o ajuste dos dois e que, caso haja discrepância importante entre eles, o modelo PWP seja preferido apenas nos casos em que seja possível a incorporação de mais variáveis clínicas. Caso contrário, sugerimos o uso do modelo de fragilidade, pois ele leva em conta características individuais não mensuradas. A aplicação da metodologia proposta pode sugerir grupos de diagnósticos prioritários para uma investigação mais aprofundada.Reports in Public HealthCadernos de Saúde Pública2005-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/2501Reports in Public Health; Vol. 21 No. 4 (2005): July/AugustCadernos de Saúde Pública; v. 21 n. 4 (2005): Julho/Agosto1678-44640102-311Xreponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZenghttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/2501/5014https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/2501/5015Castro, Mônica Silva Monteiro deCarvalho, Marilia SáTravassos, Cláudiainfo:eu-repo/semantics/openAccess2024-03-06T15:27:05Zoai:ojs.teste-cadernos.ensp.fiocruz.br:article/2501Revistahttps://cadernos.ensp.fiocruz.br/ojs/index.php/csphttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/oaicadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2024-03-06T13:02:55.778084Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)true |
dc.title.none.fl_str_mv |
Factors associated with readmission to a general hospital in Brazil |
title |
Factors associated with readmission to a general hospital in Brazil |
spellingShingle |
Factors associated with readmission to a general hospital in Brazil Castro, Mônica Silva Monteiro de General Hospitals Hospital Readmission Survival Analysis |
title_short |
Factors associated with readmission to a general hospital in Brazil |
title_full |
Factors associated with readmission to a general hospital in Brazil |
title_fullStr |
Factors associated with readmission to a general hospital in Brazil |
title_full_unstemmed |
Factors associated with readmission to a general hospital in Brazil |
title_sort |
Factors associated with readmission to a general hospital in Brazil |
author |
Castro, Mônica Silva Monteiro de |
author_facet |
Castro, Mônica Silva Monteiro de Carvalho, Marilia Sá Travassos, Cláudia |
author_role |
author |
author2 |
Carvalho, Marilia Sá Travassos, Cláudia |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Castro, Mônica Silva Monteiro de Carvalho, Marilia Sá Travassos, Cláudia |
dc.subject.por.fl_str_mv |
General Hospitals Hospital Readmission Survival Analysis |
topic |
General Hospitals Hospital Readmission Survival Analysis |
description |
The objective of this study was to compare different modeling strategies to identify individual and admissions characteristics associated with readmission to a general hospital. Routine data recorded in the Hospital Information System on all admissions to the Regional Public Hospital of Betim, Minas Gerais State, Brazil, from July 1996 to June 2000 were analyzed. Cox proportional hazards model and variants designed to deal with multiple-events data, like Andersen-Gill (AG), Prentice, Williams and Peterson (PWP), and random effects models were fitted to time between hospital admissions or censoring. For comparison purposes, a Poisson model was fitted to the total number of readmissions, using the same covariates. We analyzed 31,648 admissions of 26,198 patients, including 17,096 adults and 9,102 children. Estimates for the PWP and frailty models were very similar, and both approaches should be fitted and compared. If clinical characteristics are available, the PWP model should be used. Otherwise the random effects model can account for unmeasured differences, particularly some related to severity of the disease. These methodologies can help focus on various related readmission aspects such as diagnostic groups or medical specialties. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/2501 |
url |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/2501 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/2501/5014 https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/2501/5015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html application/pdf |
dc.publisher.none.fl_str_mv |
Reports in Public Health Cadernos de Saúde Pública |
publisher.none.fl_str_mv |
Reports in Public Health Cadernos de Saúde Pública |
dc.source.none.fl_str_mv |
Reports in Public Health; Vol. 21 No. 4 (2005): July/August Cadernos de Saúde Pública; v. 21 n. 4 (2005): Julho/Agosto 1678-4464 0102-311X reponame:Cadernos de Saúde Pública instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Cadernos de Saúde Pública |
collection |
Cadernos de Saúde Pública |
repository.name.fl_str_mv |
Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br |
_version_ |
1816705353326264320 |