Nuclear Meltdown Relocation and Core Catcher Analysis

Detalhes bibliográficos
Autor(a) principal: Bregu, Evald
Data de Publicação: 2023
Outros Autores: Ajah, Stephen Aroh, Gomes, Jefferson
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Vetor (Online)
Texto Completo: https://periodicos.furg.br/vetor/article/view/15158
Resumo: Nuclear meltdown with the potential human and environmental harm is one of the major accident hazard (MAH) faced by nuclear power plants. Limiting (or entirely avoiding) criticality events are the main design strategies for reactors of generations 3½ and 4 (Gen3½ and Gen4). These include ensuring negative void and negative temperature coefficients (for both moderator and fuel) regardless of operational conditions, which provide a self-regulating mechanism that helps preventing accidents occurrence (i.e., to address safety and reliability aspects of Gen4’s goals). However, in severe accident scenarios (e.g. during loss-of-coolant, LOCA, events) where failure to extract heat from the reactor may lead to core degradation, strategies to mitigate reactor meltdown and relocation are critical in the design of safety protocols. This work aims to numerically investigate core relocation as an integrated multi-fluid and heat dynamics problem in which flow of melted materials (UO2, Zircaloy and graphite) are modelled through interface capturing/tracking methods. Two interface tracking/capturing methods were compared, the level-set volume of fluid method (VOF) in Ansys Fluent, and the compressive advection method (CAM) in Fluidity/ICFERST. Both methods are in good agreement for the core relocation simulation. An in-vessel core catcher (IVCC) of tungsten alloy was also proposed to demonstrate core degradation control strategy through cooling of the melted multi-materials. The IVCC was simulated with a multifluid model in Ansys Fluent, in a specified applied heat flux model. The thickness of the IVCC is 0.20 m and the heat flux used is 600 kW m-2. The tungsten material used was able to withstand both thermal and mechanical loads on the lower plenum by extracting decay heat from the corium.
id FURG-7_715a2e65df8eee65b6b42a2ca125bd01
oai_identifier_str oai:ojs.periodicos.furg.br:article/15158
network_acronym_str FURG-7
network_name_str Vetor (Online)
repository_id_str
spelling Nuclear Meltdown Relocation and Core Catcher AnalysisRealocação do Núcleo do Reator Nuclear após Derretimento e Unidades de Contenção do NúcleoNuclear reactor coreMeltdown relocationCore CatcherLower plenumComputational Fluid DynamicNuclear EngineeringVolume of FluidLevel SetHeat transferNúcleo do reator nuclearRealocação do Núcleo depois do DerretimentoUnidade de Contenção de NúcleoPlenum inferiorNuclear meltdown with the potential human and environmental harm is one of the major accident hazard (MAH) faced by nuclear power plants. Limiting (or entirely avoiding) criticality events are the main design strategies for reactors of generations 3½ and 4 (Gen3½ and Gen4). These include ensuring negative void and negative temperature coefficients (for both moderator and fuel) regardless of operational conditions, which provide a self-regulating mechanism that helps preventing accidents occurrence (i.e., to address safety and reliability aspects of Gen4’s goals). However, in severe accident scenarios (e.g. during loss-of-coolant, LOCA, events) where failure to extract heat from the reactor may lead to core degradation, strategies to mitigate reactor meltdown and relocation are critical in the design of safety protocols. This work aims to numerically investigate core relocation as an integrated multi-fluid and heat dynamics problem in which flow of melted materials (UO2, Zircaloy and graphite) are modelled through interface capturing/tracking methods. Two interface tracking/capturing methods were compared, the level-set volume of fluid method (VOF) in Ansys Fluent, and the compressive advection method (CAM) in Fluidity/ICFERST. Both methods are in good agreement for the core relocation simulation. An in-vessel core catcher (IVCC) of tungsten alloy was also proposed to demonstrate core degradation control strategy through cooling of the melted multi-materials. The IVCC was simulated with a multifluid model in Ansys Fluent, in a specified applied heat flux model. The thickness of the IVCC is 0.20 m and the heat flux used is 600 kW m-2. The tungsten material used was able to withstand both thermal and mechanical loads on the lower plenum by extracting decay heat from the corium.O derretimento nuclear, com potencial danos humanos e ambientais, é um dos principais acidentes graves em usinas nucleares. Limitar (ou mesmo evitar) eventos críticos são as principais estratégias no design de reatores das gerações 3½ e 4 (Gen3½ e Gen4). Isso inclui garantir coeficientes de reatividade (de temperatura e de vazio) negativos (para ambos, moderador e o combustível) independentemente das condições operacionais. Este é um mecanismo de auto- regulação para prevenir a ocorrência de acidentes (ou seja, para abordar aspectos de segurança e confiabilidade dos objetivos do Gen4). No entanto, em cenários de acidentes graves (por exemplo, durante eventos de perda de fluido refrigerante, LOCA), onde a falha na extração de calor do reator pode levar à degradação do núcleo, estratégias para mitigar o derretimento e a realocação do reator são críticas na concepção de protocolos de segurança. Este trabalho visa investigar numericamente a realocação do núcleo como um problema integrado de dinâmica multifluido e térmica em que o fluxo de materiais derretidos (UO2, Zircaloy e grafite) é modelado através de métodos de captura/rastreamento de interface. Dois métodos de rastreamento/captura de interface foram comparados, o método de volume de fluido (VOF, no CFD ANSYS Fluent) e o método de advecção compressiva (CAM, no CFD Fluidity/ICFERST). Ambos os métodos estão em bom acordo para o estudo de caso de realocação do núcleo. Também foi proposto uma unidade de contenção do núcleo (IVCC) composta de uma liga de tungstênio para demonstrar a estratégia de controle da degradação do núcleo através do resfriamento dos materiais. O IVCC foi simulado com um modelo multifluido com fluxo de calor especificado. A espessura do IVCC é de 0.20 m e o fluxo de calor utilizado é de 600 kW m-2. O material de tungstênio utilizado foi capaz de suportar as cargas térmicas e mecânicas no plénum inferior extraindo o calor residual do corium.Universidade Federal do Rio Grande2023-12-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1515810.14295/vetor.v33i2.15158VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 2 (2023); 2-10VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 2 (2023); 2-102358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGenghttps://periodicos.furg.br/vetor/article/view/15158/10458Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessBregu, EvaldAjah, Stephen ArohGomes, Jefferson2023-12-23T15:36:59Zoai:ojs.periodicos.furg.br:article/15158Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-12-23T15:36:59Vetor (Online) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Nuclear Meltdown Relocation and Core Catcher Analysis
Realocação do Núcleo do Reator Nuclear após Derretimento e Unidades de Contenção do Núcleo
title Nuclear Meltdown Relocation and Core Catcher Analysis
spellingShingle Nuclear Meltdown Relocation and Core Catcher Analysis
Bregu, Evald
Nuclear reactor core
Meltdown relocation
Core Catcher
Lower plenum
Computational Fluid Dynamic
Nuclear Engineering
Volume of Fluid
Level Set
Heat transfer
Núcleo do reator nuclear
Realocação do Núcleo depois do Derretimento
Unidade de Contenção de Núcleo
Plenum inferior
title_short Nuclear Meltdown Relocation and Core Catcher Analysis
title_full Nuclear Meltdown Relocation and Core Catcher Analysis
title_fullStr Nuclear Meltdown Relocation and Core Catcher Analysis
title_full_unstemmed Nuclear Meltdown Relocation and Core Catcher Analysis
title_sort Nuclear Meltdown Relocation and Core Catcher Analysis
author Bregu, Evald
author_facet Bregu, Evald
Ajah, Stephen Aroh
Gomes, Jefferson
author_role author
author2 Ajah, Stephen Aroh
Gomes, Jefferson
author2_role author
author
dc.contributor.author.fl_str_mv Bregu, Evald
Ajah, Stephen Aroh
Gomes, Jefferson
dc.subject.por.fl_str_mv Nuclear reactor core
Meltdown relocation
Core Catcher
Lower plenum
Computational Fluid Dynamic
Nuclear Engineering
Volume of Fluid
Level Set
Heat transfer
Núcleo do reator nuclear
Realocação do Núcleo depois do Derretimento
Unidade de Contenção de Núcleo
Plenum inferior
topic Nuclear reactor core
Meltdown relocation
Core Catcher
Lower plenum
Computational Fluid Dynamic
Nuclear Engineering
Volume of Fluid
Level Set
Heat transfer
Núcleo do reator nuclear
Realocação do Núcleo depois do Derretimento
Unidade de Contenção de Núcleo
Plenum inferior
description Nuclear meltdown with the potential human and environmental harm is one of the major accident hazard (MAH) faced by nuclear power plants. Limiting (or entirely avoiding) criticality events are the main design strategies for reactors of generations 3½ and 4 (Gen3½ and Gen4). These include ensuring negative void and negative temperature coefficients (for both moderator and fuel) regardless of operational conditions, which provide a self-regulating mechanism that helps preventing accidents occurrence (i.e., to address safety and reliability aspects of Gen4’s goals). However, in severe accident scenarios (e.g. during loss-of-coolant, LOCA, events) where failure to extract heat from the reactor may lead to core degradation, strategies to mitigate reactor meltdown and relocation are critical in the design of safety protocols. This work aims to numerically investigate core relocation as an integrated multi-fluid and heat dynamics problem in which flow of melted materials (UO2, Zircaloy and graphite) are modelled through interface capturing/tracking methods. Two interface tracking/capturing methods were compared, the level-set volume of fluid method (VOF) in Ansys Fluent, and the compressive advection method (CAM) in Fluidity/ICFERST. Both methods are in good agreement for the core relocation simulation. An in-vessel core catcher (IVCC) of tungsten alloy was also proposed to demonstrate core degradation control strategy through cooling of the melted multi-materials. The IVCC was simulated with a multifluid model in Ansys Fluent, in a specified applied heat flux model. The thickness of the IVCC is 0.20 m and the heat flux used is 600 kW m-2. The tungsten material used was able to withstand both thermal and mechanical loads on the lower plenum by extracting decay heat from the corium.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-23
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.furg.br/vetor/article/view/15158
10.14295/vetor.v33i2.15158
url https://periodicos.furg.br/vetor/article/view/15158
identifier_str_mv 10.14295/vetor.v33i2.15158
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.furg.br/vetor/article/view/15158/10458
dc.rights.driver.fl_str_mv Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande
publisher.none.fl_str_mv Universidade Federal do Rio Grande
dc.source.none.fl_str_mv VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 2 (2023); 2-10
VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 2 (2023); 2-10
2358-3452
0102-7352
reponame:Vetor (Online)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Vetor (Online)
collection Vetor (Online)
repository.name.fl_str_mv Vetor (Online) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv gmplatt@furg.br
_version_ 1797041760261636096