(Ni,Mo)-TiO2 electrodes for electrochemical applications

Detalhes bibliográficos
Autor(a) principal: Santos, Rodrigo Miguel Franco dos
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28071
Resumo: One of the major issues of the renewable energies is their dependence of the weather conditions. If those are favourable, the energy will be produced in excess and wasted, due to limited capacity of the existing storage technologies. On the contrary, if the weather conditions are unfavourable, the energy produced will be insufficient, thus requiring the consumption of fossils fuels to assure a constant electrical output. The reversible solid oxide fuel cells (RSOFC) can contribute to the solution of this problem, provided by capability to operate in two different modes, with the hydrogen or carbon as the energy carrier. In one mode, the electricity is produced by the transformation of hydrogen into water, this is to be used when the weather conditions are unfavourable. In reverse operation mode, hydrogen is produced from the water using the excess of electricity produced by renewable energies, when the conditions are favourable. Although being fairly efficient and highly promising, this technology is still not widely available due to high electrode degradation, expensive catalytic materials, low resistance to carbon deposition and difficulties of the hydrogen storage, among others. This work was initially focusing on development of a composite material for fuel electrodes of Reversible Solid Oxide Fuel Cells (RSOFC). Base on the literature review, the nominal NiTiO3 (reference), NiTiO3 (90% mol.)- MoO3 (10% mol.) and NiTiO3 (80% mol.)- MoO3 (20% mol.) compositions were selected, prepared and characterized in the conditions, relevant for RSOFC operation. The electrical measurements combined with structural studies revealed fast degradation due to oxidation even at low temperatures, rendering their application problematic for RSOFC technology. Additional assessment of the prepared materials as electrocatalysts for alkaline water electrolysis was performed and demonstrated their potential applicability for boosting hydrogen evolution process if the applied cathodic polarization is sufficient to prevent oxidation of the Magnéli phases and decomposition of metallic phases, or redox cycling can be applied to recover the electrode surface. The obtained experimental results were correlated with thermodynamic predictions made by calculation of Ellingham and Pourbaix diagrams.
id RCAP_1466d709b275a8f9d10babc0bfd4d288
oai_identifier_str oai:ria.ua.pt:10773/28071
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling (Ni,Mo)-TiO2 electrodes for electrochemical applicationsElectrochemical propertiesCeramic materialsMagnéli phasesNi-Mo alloySOFCElectrolysisOne of the major issues of the renewable energies is their dependence of the weather conditions. If those are favourable, the energy will be produced in excess and wasted, due to limited capacity of the existing storage technologies. On the contrary, if the weather conditions are unfavourable, the energy produced will be insufficient, thus requiring the consumption of fossils fuels to assure a constant electrical output. The reversible solid oxide fuel cells (RSOFC) can contribute to the solution of this problem, provided by capability to operate in two different modes, with the hydrogen or carbon as the energy carrier. In one mode, the electricity is produced by the transformation of hydrogen into water, this is to be used when the weather conditions are unfavourable. In reverse operation mode, hydrogen is produced from the water using the excess of electricity produced by renewable energies, when the conditions are favourable. Although being fairly efficient and highly promising, this technology is still not widely available due to high electrode degradation, expensive catalytic materials, low resistance to carbon deposition and difficulties of the hydrogen storage, among others. This work was initially focusing on development of a composite material for fuel electrodes of Reversible Solid Oxide Fuel Cells (RSOFC). Base on the literature review, the nominal NiTiO3 (reference), NiTiO3 (90% mol.)- MoO3 (10% mol.) and NiTiO3 (80% mol.)- MoO3 (20% mol.) compositions were selected, prepared and characterized in the conditions, relevant for RSOFC operation. The electrical measurements combined with structural studies revealed fast degradation due to oxidation even at low temperatures, rendering their application problematic for RSOFC technology. Additional assessment of the prepared materials as electrocatalysts for alkaline water electrolysis was performed and demonstrated their potential applicability for boosting hydrogen evolution process if the applied cathodic polarization is sufficient to prevent oxidation of the Magnéli phases and decomposition of metallic phases, or redox cycling can be applied to recover the electrode surface. The obtained experimental results were correlated with thermodynamic predictions made by calculation of Ellingham and Pourbaix diagrams.Um dos maiores problemas das energias renováveis é a sua dependência das condições climatéricas. Caso estas sejam favoráveis, será produzido excesso de energia sendo esta desperdiçada devido à baixa capacidade de armazenamento por parte da tecnologia disponível. Caso contrário, se as condições climatéricas forem adversas, a energia produzida será insuficiente, sendo necessário recorrer ao consumo dos combustíveis fosseis para assegurar uma produção constante de eletricidade. As pilhas de combustível de oxido sólido reversíveis (PCOSR) podem contribuir para a resolução deste problema, devido a sua capacidade de operar em dois modos diferentes, nos quais o hidrogénio ou o carbono atuam como unidades para o armazenamento de energia. Num dos modos, a eletricidade é produzida pela transformação do hidrogénio em água, este deverá ser utilizado aquando as condições climatéricas forem adversas. No outro, o hidrogénio é produzido através da água através da utilização do excesso elétrico produzido pelas energias renovais, aquando as condições forem favoráveis. Apesar de ser relativamente eficiente e muito promissor, esta tecnologia não se encontra amplamente disponível, devido à elevada degradação dos elétrodos, dos materiais catalíticos serem dispendiosos, baixa resistência à deposição de carvão e dificuldades no armazenamento do hidrogénio, entre outros. Inicialmente, este trabalho foi focado no desenvolvimento de um material compósito para ser aplicado como elétrodo de combustível em Pilhas de Combustível de Óxido Sólido Reversíveis (PCOSR). Baseado na revisão bibliográfica, os NiTiO3 (referência), NiTiO3 (90% mol.) – MoO3 (10 % mol.) e NiTiO3 (80% mol.) – MoO3 (20% mol.) compósitos foram selecionados, preparados e caracterizados em condições conformes à da operação das PCOSR. As medidas elétricas assim como os estudos estruturais revelaram uma rápida degradação devido à oxidação, mesmo a baixa temperatura, evidenciando que a sua aplicação nas PCOSR será problemática. Adicionalmente, os materiais preparados foram avaliados como electro catalisadores para a eletrolise de água alcalina, sendo demonstrado a sua potencial aplicabilidade para favorecer o processo de evolução do hidrogénio, aquando a polarização catódica aplicada for suficiente para prevenir a oxidação das fases de Magnéli assim como a decomposição da fase metálica, ou ciclos de redox poderão ser aplicados para recuperar a superfície dos elétrodos. Os dados obtidos experimentalmente foram relacionados com predições termodinâmicas pelo cálculo de diagramas de Ellingham e Pourbaix.2019-10-29T00:00:00Z2019-10-29T00:00:00Z2019-10-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/28071engSantos, Rodrigo Miguel Franco dosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:54:20Zoai:ria.ua.pt:10773/28071Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:43.142995Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv (Ni,Mo)-TiO2 electrodes for electrochemical applications
title (Ni,Mo)-TiO2 electrodes for electrochemical applications
spellingShingle (Ni,Mo)-TiO2 electrodes for electrochemical applications
Santos, Rodrigo Miguel Franco dos
Electrochemical properties
Ceramic materials
Magnéli phases
Ni-Mo alloy
SOFC
Electrolysis
title_short (Ni,Mo)-TiO2 electrodes for electrochemical applications
title_full (Ni,Mo)-TiO2 electrodes for electrochemical applications
title_fullStr (Ni,Mo)-TiO2 electrodes for electrochemical applications
title_full_unstemmed (Ni,Mo)-TiO2 electrodes for electrochemical applications
title_sort (Ni,Mo)-TiO2 electrodes for electrochemical applications
author Santos, Rodrigo Miguel Franco dos
author_facet Santos, Rodrigo Miguel Franco dos
author_role author
dc.contributor.author.fl_str_mv Santos, Rodrigo Miguel Franco dos
dc.subject.por.fl_str_mv Electrochemical properties
Ceramic materials
Magnéli phases
Ni-Mo alloy
SOFC
Electrolysis
topic Electrochemical properties
Ceramic materials
Magnéli phases
Ni-Mo alloy
SOFC
Electrolysis
description One of the major issues of the renewable energies is their dependence of the weather conditions. If those are favourable, the energy will be produced in excess and wasted, due to limited capacity of the existing storage technologies. On the contrary, if the weather conditions are unfavourable, the energy produced will be insufficient, thus requiring the consumption of fossils fuels to assure a constant electrical output. The reversible solid oxide fuel cells (RSOFC) can contribute to the solution of this problem, provided by capability to operate in two different modes, with the hydrogen or carbon as the energy carrier. In one mode, the electricity is produced by the transformation of hydrogen into water, this is to be used when the weather conditions are unfavourable. In reverse operation mode, hydrogen is produced from the water using the excess of electricity produced by renewable energies, when the conditions are favourable. Although being fairly efficient and highly promising, this technology is still not widely available due to high electrode degradation, expensive catalytic materials, low resistance to carbon deposition and difficulties of the hydrogen storage, among others. This work was initially focusing on development of a composite material for fuel electrodes of Reversible Solid Oxide Fuel Cells (RSOFC). Base on the literature review, the nominal NiTiO3 (reference), NiTiO3 (90% mol.)- MoO3 (10% mol.) and NiTiO3 (80% mol.)- MoO3 (20% mol.) compositions were selected, prepared and characterized in the conditions, relevant for RSOFC operation. The electrical measurements combined with structural studies revealed fast degradation due to oxidation even at low temperatures, rendering their application problematic for RSOFC technology. Additional assessment of the prepared materials as electrocatalysts for alkaline water electrolysis was performed and demonstrated their potential applicability for boosting hydrogen evolution process if the applied cathodic polarization is sufficient to prevent oxidation of the Magnéli phases and decomposition of metallic phases, or redox cycling can be applied to recover the electrode surface. The obtained experimental results were correlated with thermodynamic predictions made by calculation of Ellingham and Pourbaix diagrams.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-29T00:00:00Z
2019-10-29T00:00:00Z
2019-10-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28071
url http://hdl.handle.net/10773/28071
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137663004966912