Majority rules with random tie-breaking in Boolean gene regulatory networks

Detalhes bibliográficos
Autor(a) principal: Chaouiya, Claudine
Data de Publicação: 2013
Outros Autores: Ourrad, Ouerdia, Lima, Ricardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.7/439
Resumo: We consider threshold boolean gene regulatory networks, where the update function of each gene is described as a majority rule evaluated among the regulators of that gene: it is turned ON when the sum of its regulator contributions is positive (activators contribute positively whereas repressors contribute negatively) and turned OFF when this sum is negative. In case of a tie (when contributions cancel each other out), it is often assumed that the gene keeps it current state. This framework has been successfully used to model cell cycle control in yeast. Moreover, several studies consider stochastic extensions to assess the robustness of such a model. Here, we introduce a novel, natural stochastic extension of the majority rule. It consists in randomly choosing the next value of a gene only in case of a tie. Hence, the resulting model includes deterministic and probabilistic updates. We present variants of the majority rule, including alternate treatments of the tie situation. Impact of these variants on the corresponding dynamical behaviours is discussed. After a thorough study of a class of two-node networks, we illustrate the interest of our stochastic extension using a published cell cycle model. In particular, we demonstrate that steady state analysis can be rigorously performed and can lead to effective predictions; these relate for example to the identification of interactions whose addition would ensure that a specific state is absorbing.
id RCAP_3b568a5f49901137f6e81365c851ffcf
oai_identifier_str oai:arca.igc.gulbenkian.pt:10400.7/439
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Majority rules with random tie-breaking in Boolean gene regulatory networksGene Regulatory NetworksModels, GeneticCell CycleWe consider threshold boolean gene regulatory networks, where the update function of each gene is described as a majority rule evaluated among the regulators of that gene: it is turned ON when the sum of its regulator contributions is positive (activators contribute positively whereas repressors contribute negatively) and turned OFF when this sum is negative. In case of a tie (when contributions cancel each other out), it is often assumed that the gene keeps it current state. This framework has been successfully used to model cell cycle control in yeast. Moreover, several studies consider stochastic extensions to assess the robustness of such a model. Here, we introduce a novel, natural stochastic extension of the majority rule. It consists in randomly choosing the next value of a gene only in case of a tie. Hence, the resulting model includes deterministic and probabilistic updates. We present variants of the majority rule, including alternate treatments of the tie situation. Impact of these variants on the corresponding dynamical behaviours is discussed. After a thorough study of a class of two-node networks, we illustrate the interest of our stochastic extension using a published cell cycle model. In particular, we demonstrate that steady state analysis can be rigorously performed and can lead to effective predictions; these relate for example to the identification of interactions whose addition would ensure that a specific state is absorbing.PLOSARCAChaouiya, ClaudineOurrad, OuerdiaLima, Ricardo2015-10-26T12:09:16Z2013-07-262013-07-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.7/439engChaouiya C, Ourrad O, Lima R (2013) Majority Rules with Random Tie-Breaking in Boolean Gene Regulatory Networks. PLoS ONE 8(7): e69626. doi:10.1371/journal.pone.006962610.1371/journal.pone.0069626info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-29T14:34:49Zoai:arca.igc.gulbenkian.pt:10400.7/439Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:11:43.671745Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Majority rules with random tie-breaking in Boolean gene regulatory networks
title Majority rules with random tie-breaking in Boolean gene regulatory networks
spellingShingle Majority rules with random tie-breaking in Boolean gene regulatory networks
Chaouiya, Claudine
Gene Regulatory Networks
Models, Genetic
Cell Cycle
title_short Majority rules with random tie-breaking in Boolean gene regulatory networks
title_full Majority rules with random tie-breaking in Boolean gene regulatory networks
title_fullStr Majority rules with random tie-breaking in Boolean gene regulatory networks
title_full_unstemmed Majority rules with random tie-breaking in Boolean gene regulatory networks
title_sort Majority rules with random tie-breaking in Boolean gene regulatory networks
author Chaouiya, Claudine
author_facet Chaouiya, Claudine
Ourrad, Ouerdia
Lima, Ricardo
author_role author
author2 Ourrad, Ouerdia
Lima, Ricardo
author2_role author
author
dc.contributor.none.fl_str_mv ARCA
dc.contributor.author.fl_str_mv Chaouiya, Claudine
Ourrad, Ouerdia
Lima, Ricardo
dc.subject.por.fl_str_mv Gene Regulatory Networks
Models, Genetic
Cell Cycle
topic Gene Regulatory Networks
Models, Genetic
Cell Cycle
description We consider threshold boolean gene regulatory networks, where the update function of each gene is described as a majority rule evaluated among the regulators of that gene: it is turned ON when the sum of its regulator contributions is positive (activators contribute positively whereas repressors contribute negatively) and turned OFF when this sum is negative. In case of a tie (when contributions cancel each other out), it is often assumed that the gene keeps it current state. This framework has been successfully used to model cell cycle control in yeast. Moreover, several studies consider stochastic extensions to assess the robustness of such a model. Here, we introduce a novel, natural stochastic extension of the majority rule. It consists in randomly choosing the next value of a gene only in case of a tie. Hence, the resulting model includes deterministic and probabilistic updates. We present variants of the majority rule, including alternate treatments of the tie situation. Impact of these variants on the corresponding dynamical behaviours is discussed. After a thorough study of a class of two-node networks, we illustrate the interest of our stochastic extension using a published cell cycle model. In particular, we demonstrate that steady state analysis can be rigorously performed and can lead to effective predictions; these relate for example to the identification of interactions whose addition would ensure that a specific state is absorbing.
publishDate 2013
dc.date.none.fl_str_mv 2013-07-26
2013-07-26T00:00:00Z
2015-10-26T12:09:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.7/439
url http://hdl.handle.net/10400.7/439
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chaouiya C, Ourrad O, Lima R (2013) Majority Rules with Random Tie-Breaking in Boolean Gene Regulatory Networks. PLoS ONE 8(7): e69626. doi:10.1371/journal.pone.0069626
10.1371/journal.pone.0069626
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv PLOS
publisher.none.fl_str_mv PLOS
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130572913639424