Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts

Detalhes bibliográficos
Autor(a) principal: Moukette, Bruno
Data de Publicação: 2021
Outros Autores: Castelão-Baptista, José P., Ferreira, Luciana L., Silva, Ana M., Simões, Rui F., Cabral, Célia, Pieme, Constant A., Ngogang, Jeanne Y., Sardão, Vilma A., Oliveira, Paulo J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/103927
https://doi.org/10.1155/2021/8858165
Resumo: Ethnopharmacological Relevance. Doxorubicin (Dox) is an anthracycline antibiotic widely used in cancer treatment. Despite its antitumor efficacy, its clinical application is significantly limited because of its cardiotoxicity originated, among other factors, from pro-oxidant damage to cardiac mitochondria. Phytochemicals represent a potentially attractive strategy to mitigate Dox cardiotoxicity due to their antioxidant properties, with plant extracts used in traditional medicine often being ignored in terms of potential therapeutic uses. Aim of the Study. ,e present study aimed at investigating the protective effects of two native Cameroonian plants, Afrostyrax lepidophyllus Mildbr. (A. lepidophyllus) and Monodora myristica (Gaertn.) Dunal (M. myristica), against Dox-induced cytotoxicity on cultured H9c2 cardiomyoblast cells. Materials and Methods. Bark extracts of these plants (1 and 25 μg/mL) were added 3 hours before coincubating H9c2 cardiomyoblasts with Dox (0.5 and 1 μM) for 24 hours more. We measured cell mass and metabolic viability, mitochondrial transmembrane potential, superoxide anion content, and activity-like of caspase-3 and caspase-9 following treatment with the extracts and/or Dox. Also, selenium and vitamin C contents were measured in the plant extracts. Results. ,e results confirmed that Dox treatment decreased cell mass, mitochondrial membrane potential and metabolic viability, increased mitochondrial superoxide anion, and stimulated caspase-3 and caspase-9-like activities. Pretreatment of the cells with the plant extracts significantly inhibited Dox cytotoxicity, with more significant results at the higher concentration. Measurements of selenium and vitamin C in the extracts revealed higher concentration of both when compared with other Cameroonian spices. Conclusion. Both extracts of A. lepidophyllus and M. myristica were effective against Dox-induced cytotoxicity, most likely due to their content in antioxidants.
id RCAP_4006a0891bb76fa77d677958c390506c
oai_identifier_str oai:estudogeral.uc.pt:10316/103927
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 CardiomyoblastsEthnopharmacological Relevance. Doxorubicin (Dox) is an anthracycline antibiotic widely used in cancer treatment. Despite its antitumor efficacy, its clinical application is significantly limited because of its cardiotoxicity originated, among other factors, from pro-oxidant damage to cardiac mitochondria. Phytochemicals represent a potentially attractive strategy to mitigate Dox cardiotoxicity due to their antioxidant properties, with plant extracts used in traditional medicine often being ignored in terms of potential therapeutic uses. Aim of the Study. ,e present study aimed at investigating the protective effects of two native Cameroonian plants, Afrostyrax lepidophyllus Mildbr. (A. lepidophyllus) and Monodora myristica (Gaertn.) Dunal (M. myristica), against Dox-induced cytotoxicity on cultured H9c2 cardiomyoblast cells. Materials and Methods. Bark extracts of these plants (1 and 25 μg/mL) were added 3 hours before coincubating H9c2 cardiomyoblasts with Dox (0.5 and 1 μM) for 24 hours more. We measured cell mass and metabolic viability, mitochondrial transmembrane potential, superoxide anion content, and activity-like of caspase-3 and caspase-9 following treatment with the extracts and/or Dox. Also, selenium and vitamin C contents were measured in the plant extracts. Results. ,e results confirmed that Dox treatment decreased cell mass, mitochondrial membrane potential and metabolic viability, increased mitochondrial superoxide anion, and stimulated caspase-3 and caspase-9-like activities. Pretreatment of the cells with the plant extracts significantly inhibited Dox cytotoxicity, with more significant results at the higher concentration. Measurements of selenium and vitamin C in the extracts revealed higher concentration of both when compared with other Cameroonian spices. Conclusion. Both extracts of A. lepidophyllus and M. myristica were effective against Dox-induced cytotoxicity, most likely due to their content in antioxidants.Hindawi2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103927http://hdl.handle.net/10316/103927https://doi.org/10.1155/2021/8858165eng1741-427XMoukette, BrunoCastelão-Baptista, José P.Ferreira, Luciana L.Silva, Ana M.Simões, Rui F.Cabral, CéliaPieme, Constant A.Ngogang, Jeanne Y.Sardão, Vilma A.Oliveira, Paulo J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-12-09T21:38:13Zoai:estudogeral.uc.pt:10316/103927Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:40.765604Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts
title Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts
spellingShingle Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts
Moukette, Bruno
title_short Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts
title_full Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts
title_fullStr Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts
title_full_unstemmed Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts
title_sort Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts
author Moukette, Bruno
author_facet Moukette, Bruno
Castelão-Baptista, José P.
Ferreira, Luciana L.
Silva, Ana M.
Simões, Rui F.
Cabral, Célia
Pieme, Constant A.
Ngogang, Jeanne Y.
Sardão, Vilma A.
Oliveira, Paulo J.
author_role author
author2 Castelão-Baptista, José P.
Ferreira, Luciana L.
Silva, Ana M.
Simões, Rui F.
Cabral, Célia
Pieme, Constant A.
Ngogang, Jeanne Y.
Sardão, Vilma A.
Oliveira, Paulo J.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Moukette, Bruno
Castelão-Baptista, José P.
Ferreira, Luciana L.
Silva, Ana M.
Simões, Rui F.
Cabral, Célia
Pieme, Constant A.
Ngogang, Jeanne Y.
Sardão, Vilma A.
Oliveira, Paulo J.
description Ethnopharmacological Relevance. Doxorubicin (Dox) is an anthracycline antibiotic widely used in cancer treatment. Despite its antitumor efficacy, its clinical application is significantly limited because of its cardiotoxicity originated, among other factors, from pro-oxidant damage to cardiac mitochondria. Phytochemicals represent a potentially attractive strategy to mitigate Dox cardiotoxicity due to their antioxidant properties, with plant extracts used in traditional medicine often being ignored in terms of potential therapeutic uses. Aim of the Study. ,e present study aimed at investigating the protective effects of two native Cameroonian plants, Afrostyrax lepidophyllus Mildbr. (A. lepidophyllus) and Monodora myristica (Gaertn.) Dunal (M. myristica), against Dox-induced cytotoxicity on cultured H9c2 cardiomyoblast cells. Materials and Methods. Bark extracts of these plants (1 and 25 μg/mL) were added 3 hours before coincubating H9c2 cardiomyoblasts with Dox (0.5 and 1 μM) for 24 hours more. We measured cell mass and metabolic viability, mitochondrial transmembrane potential, superoxide anion content, and activity-like of caspase-3 and caspase-9 following treatment with the extracts and/or Dox. Also, selenium and vitamin C contents were measured in the plant extracts. Results. ,e results confirmed that Dox treatment decreased cell mass, mitochondrial membrane potential and metabolic viability, increased mitochondrial superoxide anion, and stimulated caspase-3 and caspase-9-like activities. Pretreatment of the cells with the plant extracts significantly inhibited Dox cytotoxicity, with more significant results at the higher concentration. Measurements of selenium and vitamin C in the extracts revealed higher concentration of both when compared with other Cameroonian spices. Conclusion. Both extracts of A. lepidophyllus and M. myristica were effective against Dox-induced cytotoxicity, most likely due to their content in antioxidants.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/103927
http://hdl.handle.net/10316/103927
https://doi.org/10.1155/2021/8858165
url http://hdl.handle.net/10316/103927
https://doi.org/10.1155/2021/8858165
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1741-427X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Hindawi
publisher.none.fl_str_mv Hindawi
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134099116392449