Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells

Detalhes bibliográficos
Autor(a) principal: Magalhães, Maria Meireles Ribeiro
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/162023
Resumo: Optimizing solar cell performance hinges significantly on perfecting the Transparent Conduc- tive Oxide (TCO) layer, a critical component for efficient charge collection and light transmis- sion in the solar cell. Due to their high electron mobilities, TCO materials based on In2O3 appear to be particularly interesting options for solar applications. Indium Tin Oxide (ITO) is one of the most well-known and widely used TCO materials, but its performance is hindered by parasitic free carrier absorption and light reflection, particularly in the near-infrared (NIR) spectrum. To overcome these issues, researchers have turned their focus to other doped-indium oxides. This study will focus on optimizing sputtered Cerium-doped Indium Oxide (ICO) for application in Silicon Heterojunction solar cells (SHJ-SC). ICO's wide bandgap, exceeding 3.6 eV, guarantees that a larger fraction of the solar spectrum reaches the silicon absorber layers. Notably, ICO exhibits remarkable electron mobilities, surpassing 130 cm2/Vs when deposited with a heated substrate. However, due to equipment constraints, all depositions in this study were done at room temperature. To elevate ICO's optoelectrical properties, optimization of deposition pa- rameters, such as oxygen flow, chamber pressure, sputtering power, and water vapor partial pressure, was performed. This optimization yielded films with enhanced mobilities and trans- parency, outperforming conventional laboratory-standard ITO films. For a 35-nm-thick ICO layer, we achieved a mobility of 44.22 cm2/Vs, an average trans- mittance of 85.23% and a resistivity of 8.56×10-4 Ω·cm. With the ICO:H layer, we achieved a mobility of 44.56 cm2/Vs, an average transmittance of 84.77%, and a resistivity of 7.28×10-4 Ω·cm. At the device level, we obtained impressive efficiencies of 23.58% and 23.57% for cells employing ICO and ICO:H, respectively. The former showcased a high Voc of 0.722 V, while the latter achieved a Jsc of 40.53 mA/cm2. These results place ICO as a promising alternative for ITO as TCO in diverse photovoltaic applications.
id RCAP_43433ae86ef1f1a2f5260f48656d1aeb
oai_identifier_str oai:run.unl.pt:10362/162023
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar CellsSHJ solar cellsTCOCerium-doped Indium OxideRF magnetron sputteringDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaOptimizing solar cell performance hinges significantly on perfecting the Transparent Conduc- tive Oxide (TCO) layer, a critical component for efficient charge collection and light transmis- sion in the solar cell. Due to their high electron mobilities, TCO materials based on In2O3 appear to be particularly interesting options for solar applications. Indium Tin Oxide (ITO) is one of the most well-known and widely used TCO materials, but its performance is hindered by parasitic free carrier absorption and light reflection, particularly in the near-infrared (NIR) spectrum. To overcome these issues, researchers have turned their focus to other doped-indium oxides. This study will focus on optimizing sputtered Cerium-doped Indium Oxide (ICO) for application in Silicon Heterojunction solar cells (SHJ-SC). ICO's wide bandgap, exceeding 3.6 eV, guarantees that a larger fraction of the solar spectrum reaches the silicon absorber layers. Notably, ICO exhibits remarkable electron mobilities, surpassing 130 cm2/Vs when deposited with a heated substrate. However, due to equipment constraints, all depositions in this study were done at room temperature. To elevate ICO's optoelectrical properties, optimization of deposition pa- rameters, such as oxygen flow, chamber pressure, sputtering power, and water vapor partial pressure, was performed. This optimization yielded films with enhanced mobilities and trans- parency, outperforming conventional laboratory-standard ITO films. For a 35-nm-thick ICO layer, we achieved a mobility of 44.22 cm2/Vs, an average trans- mittance of 85.23% and a resistivity of 8.56×10-4 Ω·cm. With the ICO:H layer, we achieved a mobility of 44.56 cm2/Vs, an average transmittance of 84.77%, and a resistivity of 7.28×10-4 Ω·cm. At the device level, we obtained impressive efficiencies of 23.58% and 23.57% for cells employing ICO and ICO:H, respectively. The former showcased a high Voc of 0.722 V, while the latter achieved a Jsc of 40.53 mA/cm2. These results place ICO as a promising alternative for ITO as TCO in diverse photovoltaic applications.A otimização de uma célula solar depende significativamente do aperfeiçoamento da camada de óxido condutor transparente (TCO), crítico para a coleta eficiente de carga e para a trans- missão de luz. Devido às suas elevadas mobilidades, os TCOs baseados em In2O3 são opções interessantes para aplicações solares. O óxido de índio e estanho (ITO) é um dos TCOs mais conhecidos e utilizados, mas o seu desempenho é prejudicado pela absorção de transporta- dores livres parasitas e pela reflexão da luz, particularmente no infravermelho próximo (NIR). Para superar esses problemas, o foco está a virar-se para outros óxidos de índio dopados. Este projeto concentra-se na otimização de óxido de índio dopado com cério (ICO) para aplicação em células solares de heterojunção de silício (SHJ). A ampla bandgap do ICO, superior a 3.6 eV, garante que uma maior fração do espectro solar atinja as camadas absorventes da célula. O ICO exibe mobilidades elevadas, ultrapassando 130 cm2/Vs quando depositado num subs- trato aquecido. No entanto, devido a restrições de equipamento, todas as deposições neste estudo foram feitas à temperatura ambiente. Para elevar as propriedades optoelétricas do ICO, foi realizada a otimização de alguns parâmetros de deposição, como fluxo de oxigênio, pressão na câmara, potência de pulverização, e pressão parcial de vapor de água. Esta otimização levou a filmes com elevadas mobilidade e transparência, superando os filmes de ITO convencionais. Para uma camada de 35 nm de espessura, o ICO alcançou mobilidade de 44.22 cm2/Vs, transmitância média de 85.23%, e resistividade de 8.56×10-4 Ω·cm. O ICO:H alcançou mobili- dade de 44.56 cm2/Vs, transmitância média de 84.77%, e resistividade de 7.28×10-4 Ω·cm. No dispositivo final, obtivemos eficiências de 23.58% e 23.57% para células com ICO e ICO:H, res- petivamente. A primeira apresentou um alto Voc de 0.722 V, enquanto a última alcançou um alto Jsc de 40.53 mA/cm2. Estes resultados colocam o ICO como uma alternativa promissora para ITO como TCO em diversas aplicações fotovoltaicas.Isabella, OlindoMendes, ManuelRUNMagalhães, Maria Meireles Ribeiro2024-01-08T16:20:03Z2023-112023-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/162023enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:44:10Zoai:run.unl.pt:10362/162023Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:28.354591Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells
title Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells
spellingShingle Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells
Magalhães, Maria Meireles Ribeiro
SHJ solar cells
TCO
Cerium-doped Indium Oxide
RF magnetron sputtering
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
title_short Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells
title_full Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells
title_fullStr Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells
title_full_unstemmed Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells
title_sort Optimization of RF Magnetron Sputtering of Cerium-Doped Indium Oxide for Silicon Heterojunction Solar Cells
author Magalhães, Maria Meireles Ribeiro
author_facet Magalhães, Maria Meireles Ribeiro
author_role author
dc.contributor.none.fl_str_mv Isabella, Olindo
Mendes, Manuel
RUN
dc.contributor.author.fl_str_mv Magalhães, Maria Meireles Ribeiro
dc.subject.por.fl_str_mv SHJ solar cells
TCO
Cerium-doped Indium Oxide
RF magnetron sputtering
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
topic SHJ solar cells
TCO
Cerium-doped Indium Oxide
RF magnetron sputtering
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
description Optimizing solar cell performance hinges significantly on perfecting the Transparent Conduc- tive Oxide (TCO) layer, a critical component for efficient charge collection and light transmis- sion in the solar cell. Due to their high electron mobilities, TCO materials based on In2O3 appear to be particularly interesting options for solar applications. Indium Tin Oxide (ITO) is one of the most well-known and widely used TCO materials, but its performance is hindered by parasitic free carrier absorption and light reflection, particularly in the near-infrared (NIR) spectrum. To overcome these issues, researchers have turned their focus to other doped-indium oxides. This study will focus on optimizing sputtered Cerium-doped Indium Oxide (ICO) for application in Silicon Heterojunction solar cells (SHJ-SC). ICO's wide bandgap, exceeding 3.6 eV, guarantees that a larger fraction of the solar spectrum reaches the silicon absorber layers. Notably, ICO exhibits remarkable electron mobilities, surpassing 130 cm2/Vs when deposited with a heated substrate. However, due to equipment constraints, all depositions in this study were done at room temperature. To elevate ICO's optoelectrical properties, optimization of deposition pa- rameters, such as oxygen flow, chamber pressure, sputtering power, and water vapor partial pressure, was performed. This optimization yielded films with enhanced mobilities and trans- parency, outperforming conventional laboratory-standard ITO films. For a 35-nm-thick ICO layer, we achieved a mobility of 44.22 cm2/Vs, an average trans- mittance of 85.23% and a resistivity of 8.56×10-4 Ω·cm. With the ICO:H layer, we achieved a mobility of 44.56 cm2/Vs, an average transmittance of 84.77%, and a resistivity of 7.28×10-4 Ω·cm. At the device level, we obtained impressive efficiencies of 23.58% and 23.57% for cells employing ICO and ICO:H, respectively. The former showcased a high Voc of 0.722 V, while the latter achieved a Jsc of 40.53 mA/cm2. These results place ICO as a promising alternative for ITO as TCO in diverse photovoltaic applications.
publishDate 2023
dc.date.none.fl_str_mv 2023-11
2023-11-01T00:00:00Z
2024-01-08T16:20:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/162023
url http://hdl.handle.net/10362/162023
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138165756264448