The intersectional genetics landscape for humans

Detalhes bibliográficos
Autor(a) principal: Macedo, Andre
Data de Publicação: 2020
Outros Autores: Gontijo, Alisson M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/103936
Resumo: BACKGROUND: The human body is made up of hundreds-perhaps thousands-of cell types and states, most of which are currently inaccessible genetically. Intersectional genetic approaches can increase the number of genetically accessible cells, but the scope and safety of these approaches have not been systematically assessed. A typical intersectional method acts like an "AND" logic gate by converting the input of 2 or more active, yet unspecific, regulatory elements (REs) into a single cell type specific synthetic output. RESULTS: Here, we systematically assessed the intersectional genetics landscape of the human genome using a subset of cells from a large RE usage atlas (Functional ANnoTation Of the Mammalian genome 5 consortium, FANTOM5) obtained by cap analysis of gene expression sequencing (CAGE-seq). We developed the heuristics and algorithms to retrieve and quality-rank "AND" gate intersections. Of the 154 primary cell types surveyed, >90% can be distinguished from each other with as few as 3 to 4 active REs, with quantifiable safety and robustness. We call these minimal intersections of active REs with cell-type diagnostic potential "versatile entry codes" (VEnCodes). Each of the 158 cancer cell types surveyed could also be distinguished from the healthy primary cell types with small VEnCodes, most of which were robust to intra- and interindividual variation. Methods for the cross-validation of CAGE-seq-derived VEnCodes and for the extraction of VEnCodes from pooled single-cell sequencing data are also presented. CONCLUSIONS: Our work provides a systematic view of the intersectional genetics landscape in humans and demonstrates the potential of these approaches for future gene delivery technologies.
id RCAP_4cdeeeb3f787a6b8ad8deec31696f208
oai_identifier_str oai:run.unl.pt:10362/103936
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The intersectional genetics landscape for humanscell classifiercell targetingcombinatorial geneticsenhancersgene regulationpromotersComputer Science ApplicationsHealth InformaticsSDG 3 - Good Health and Well-beingBACKGROUND: The human body is made up of hundreds-perhaps thousands-of cell types and states, most of which are currently inaccessible genetically. Intersectional genetic approaches can increase the number of genetically accessible cells, but the scope and safety of these approaches have not been systematically assessed. A typical intersectional method acts like an "AND" logic gate by converting the input of 2 or more active, yet unspecific, regulatory elements (REs) into a single cell type specific synthetic output. RESULTS: Here, we systematically assessed the intersectional genetics landscape of the human genome using a subset of cells from a large RE usage atlas (Functional ANnoTation Of the Mammalian genome 5 consortium, FANTOM5) obtained by cap analysis of gene expression sequencing (CAGE-seq). We developed the heuristics and algorithms to retrieve and quality-rank "AND" gate intersections. Of the 154 primary cell types surveyed, >90% can be distinguished from each other with as few as 3 to 4 active REs, with quantifiable safety and robustness. We call these minimal intersections of active REs with cell-type diagnostic potential "versatile entry codes" (VEnCodes). Each of the 158 cancer cell types surveyed could also be distinguished from the healthy primary cell types with small VEnCodes, most of which were robust to intra- and interindividual variation. Methods for the cross-validation of CAGE-seq-derived VEnCodes and for the extraction of VEnCodes from pooled single-cell sequencing data are also presented. CONCLUSIONS: Our work provides a systematic view of the intersectional genetics landscape in humans and demonstrates the potential of these approaches for future gene delivery technologies.Centro de Estudos de Doenças Crónicas (CEDOC)NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNMacedo, AndreGontijo, Alisson M.2020-09-11T22:43:27Z2020-08-012020-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/103936eng2047-217XPURE: 19792706https://doi.org/10.1093/gigascience/giaa083info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:49:32Zoai:run.unl.pt:10362/103936Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:40:05.908581Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The intersectional genetics landscape for humans
title The intersectional genetics landscape for humans
spellingShingle The intersectional genetics landscape for humans
Macedo, Andre
cell classifier
cell targeting
combinatorial genetics
enhancers
gene regulation
promoters
Computer Science Applications
Health Informatics
SDG 3 - Good Health and Well-being
title_short The intersectional genetics landscape for humans
title_full The intersectional genetics landscape for humans
title_fullStr The intersectional genetics landscape for humans
title_full_unstemmed The intersectional genetics landscape for humans
title_sort The intersectional genetics landscape for humans
author Macedo, Andre
author_facet Macedo, Andre
Gontijo, Alisson M.
author_role author
author2 Gontijo, Alisson M.
author2_role author
dc.contributor.none.fl_str_mv Centro de Estudos de Doenças Crónicas (CEDOC)
NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
RUN
dc.contributor.author.fl_str_mv Macedo, Andre
Gontijo, Alisson M.
dc.subject.por.fl_str_mv cell classifier
cell targeting
combinatorial genetics
enhancers
gene regulation
promoters
Computer Science Applications
Health Informatics
SDG 3 - Good Health and Well-being
topic cell classifier
cell targeting
combinatorial genetics
enhancers
gene regulation
promoters
Computer Science Applications
Health Informatics
SDG 3 - Good Health and Well-being
description BACKGROUND: The human body is made up of hundreds-perhaps thousands-of cell types and states, most of which are currently inaccessible genetically. Intersectional genetic approaches can increase the number of genetically accessible cells, but the scope and safety of these approaches have not been systematically assessed. A typical intersectional method acts like an "AND" logic gate by converting the input of 2 or more active, yet unspecific, regulatory elements (REs) into a single cell type specific synthetic output. RESULTS: Here, we systematically assessed the intersectional genetics landscape of the human genome using a subset of cells from a large RE usage atlas (Functional ANnoTation Of the Mammalian genome 5 consortium, FANTOM5) obtained by cap analysis of gene expression sequencing (CAGE-seq). We developed the heuristics and algorithms to retrieve and quality-rank "AND" gate intersections. Of the 154 primary cell types surveyed, >90% can be distinguished from each other with as few as 3 to 4 active REs, with quantifiable safety and robustness. We call these minimal intersections of active REs with cell-type diagnostic potential "versatile entry codes" (VEnCodes). Each of the 158 cancer cell types surveyed could also be distinguished from the healthy primary cell types with small VEnCodes, most of which were robust to intra- and interindividual variation. Methods for the cross-validation of CAGE-seq-derived VEnCodes and for the extraction of VEnCodes from pooled single-cell sequencing data are also presented. CONCLUSIONS: Our work provides a systematic view of the intersectional genetics landscape in humans and demonstrates the potential of these approaches for future gene delivery technologies.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-11T22:43:27Z
2020-08-01
2020-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/103936
url http://hdl.handle.net/10362/103936
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2047-217X
PURE: 19792706
https://doi.org/10.1093/gigascience/giaa083
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138016591085568