Kernel density estimation using local cubic polynomials through option prices applied to intraday data

Detalhes bibliográficos
Autor(a) principal: Monteiro, Ana Margarida Machado
Data de Publicação: 2019
Outros Autores: Santos, António Alberto Ferreira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/87034
Resumo: A new approach is considered to estimate risk-neutral densities (RND) within a kernel regression framework, through local cubic polynomial estimation using intraday data. There is a new strategy for the definition of a criterion function used in nonparametric regression that includes calls, puts, and weights in the optimization problem associated with parameters estimation. No-arbitrage restrictions are incorporated in the problem through equality and bound constraints. This yields directly density functions of interest with minimum requirements needed. Within a simulation framework, it is demonstrated the robustness of proposed procedures. Additionally, RNDs are estimated through option prices associated with two indices, S&P500 and VIX.
id RCAP_5410a79f2209386a0fa5b26ea14aa82d
oai_identifier_str oai:estudogeral.uc.pt:10316/87034
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Kernel density estimation using local cubic polynomials through option prices applied to intraday datakernel functions, Local polynomials, No-arbitrage constraints, Option prices, Risk-neutral densityA new approach is considered to estimate risk-neutral densities (RND) within a kernel regression framework, through local cubic polynomial estimation using intraday data. There is a new strategy for the definition of a criterion function used in nonparametric regression that includes calls, puts, and weights in the optimization problem associated with parameters estimation. No-arbitrage restrictions are incorporated in the problem through equality and bound constraints. This yields directly density functions of interest with minimum requirements needed. Within a simulation framework, it is demonstrated the robustness of proposed procedures. Additionally, RNDs are estimated through option prices associated with two indices, S&P500 and VIX.2019-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/87034http://hdl.handle.net/10316/87034engMonteiro, Ana Margarida MachadoSantos, António Alberto Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-07-14T09:29:21Zoai:estudogeral.uc.pt:10316/87034Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:08:03.615185Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Kernel density estimation using local cubic polynomials through option prices applied to intraday data
title Kernel density estimation using local cubic polynomials through option prices applied to intraday data
spellingShingle Kernel density estimation using local cubic polynomials through option prices applied to intraday data
Monteiro, Ana Margarida Machado
kernel functions, Local polynomials, No-arbitrage constraints, Option prices, Risk-neutral density
title_short Kernel density estimation using local cubic polynomials through option prices applied to intraday data
title_full Kernel density estimation using local cubic polynomials through option prices applied to intraday data
title_fullStr Kernel density estimation using local cubic polynomials through option prices applied to intraday data
title_full_unstemmed Kernel density estimation using local cubic polynomials through option prices applied to intraday data
title_sort Kernel density estimation using local cubic polynomials through option prices applied to intraday data
author Monteiro, Ana Margarida Machado
author_facet Monteiro, Ana Margarida Machado
Santos, António Alberto Ferreira
author_role author
author2 Santos, António Alberto Ferreira
author2_role author
dc.contributor.author.fl_str_mv Monteiro, Ana Margarida Machado
Santos, António Alberto Ferreira
dc.subject.por.fl_str_mv kernel functions, Local polynomials, No-arbitrage constraints, Option prices, Risk-neutral density
topic kernel functions, Local polynomials, No-arbitrage constraints, Option prices, Risk-neutral density
description A new approach is considered to estimate risk-neutral densities (RND) within a kernel regression framework, through local cubic polynomial estimation using intraday data. There is a new strategy for the definition of a criterion function used in nonparametric regression that includes calls, puts, and weights in the optimization problem associated with parameters estimation. No-arbitrage restrictions are incorporated in the problem through equality and bound constraints. This yields directly density functions of interest with minimum requirements needed. Within a simulation framework, it is demonstrated the robustness of proposed procedures. Additionally, RNDs are estimated through option prices associated with two indices, S&P500 and VIX.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/87034
http://hdl.handle.net/10316/87034
url http://hdl.handle.net/10316/87034
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133972447363072