Kernel density estimation using local cubic polynomials through option prices applied to intraday data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/87034 |
Resumo: | A new approach is considered to estimate risk-neutral densities (RND) within a kernel regression framework, through local cubic polynomial estimation using intraday data. There is a new strategy for the definition of a criterion function used in nonparametric regression that includes calls, puts, and weights in the optimization problem associated with parameters estimation. No-arbitrage restrictions are incorporated in the problem through equality and bound constraints. This yields directly density functions of interest with minimum requirements needed. Within a simulation framework, it is demonstrated the robustness of proposed procedures. Additionally, RNDs are estimated through option prices associated with two indices, S&P500 and VIX. |
id |
RCAP_5410a79f2209386a0fa5b26ea14aa82d |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/87034 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Kernel density estimation using local cubic polynomials through option prices applied to intraday datakernel functions, Local polynomials, No-arbitrage constraints, Option prices, Risk-neutral densityA new approach is considered to estimate risk-neutral densities (RND) within a kernel regression framework, through local cubic polynomial estimation using intraday data. There is a new strategy for the definition of a criterion function used in nonparametric regression that includes calls, puts, and weights in the optimization problem associated with parameters estimation. No-arbitrage restrictions are incorporated in the problem through equality and bound constraints. This yields directly density functions of interest with minimum requirements needed. Within a simulation framework, it is demonstrated the robustness of proposed procedures. Additionally, RNDs are estimated through option prices associated with two indices, S&P500 and VIX.2019-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/87034http://hdl.handle.net/10316/87034engMonteiro, Ana Margarida MachadoSantos, António Alberto Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-07-14T09:29:21Zoai:estudogeral.uc.pt:10316/87034Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:08:03.615185Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Kernel density estimation using local cubic polynomials through option prices applied to intraday data |
title |
Kernel density estimation using local cubic polynomials through option prices applied to intraday data |
spellingShingle |
Kernel density estimation using local cubic polynomials through option prices applied to intraday data Monteiro, Ana Margarida Machado kernel functions, Local polynomials, No-arbitrage constraints, Option prices, Risk-neutral density |
title_short |
Kernel density estimation using local cubic polynomials through option prices applied to intraday data |
title_full |
Kernel density estimation using local cubic polynomials through option prices applied to intraday data |
title_fullStr |
Kernel density estimation using local cubic polynomials through option prices applied to intraday data |
title_full_unstemmed |
Kernel density estimation using local cubic polynomials through option prices applied to intraday data |
title_sort |
Kernel density estimation using local cubic polynomials through option prices applied to intraday data |
author |
Monteiro, Ana Margarida Machado |
author_facet |
Monteiro, Ana Margarida Machado Santos, António Alberto Ferreira |
author_role |
author |
author2 |
Santos, António Alberto Ferreira |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Monteiro, Ana Margarida Machado Santos, António Alberto Ferreira |
dc.subject.por.fl_str_mv |
kernel functions, Local polynomials, No-arbitrage constraints, Option prices, Risk-neutral density |
topic |
kernel functions, Local polynomials, No-arbitrage constraints, Option prices, Risk-neutral density |
description |
A new approach is considered to estimate risk-neutral densities (RND) within a kernel regression framework, through local cubic polynomial estimation using intraday data. There is a new strategy for the definition of a criterion function used in nonparametric regression that includes calls, puts, and weights in the optimization problem associated with parameters estimation. No-arbitrage restrictions are incorporated in the problem through equality and bound constraints. This yields directly density functions of interest with minimum requirements needed. Within a simulation framework, it is demonstrated the robustness of proposed procedures. Additionally, RNDs are estimated through option prices associated with two indices, S&P500 and VIX. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/87034 http://hdl.handle.net/10316/87034 |
url |
http://hdl.handle.net/10316/87034 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133972447363072 |