On the periodic orbits, shadowing and strong transitivity of continuous flows
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/9018 |
Resumo: | We prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in Bomfim and Varandas (2015). In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic orbits hold for a C0-Baire generic subset of Lipschitz vector fields, that generate continuous flows. Similar results also hold for C0-generic homeomorphisms and, in particular, we deduce that chain recurrent classes of C0-generic homeomorphisms have the gluing orbit property. |
id |
RCAP_561ff1451f90b26557cce8442636715a |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/9018 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the periodic orbits, shadowing and strong transitivity of continuous flowsGluing orbit propertyShadowingPeriodic orbitsWe prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in Bomfim and Varandas (2015). In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic orbits hold for a C0-Baire generic subset of Lipschitz vector fields, that generate continuous flows. Similar results also hold for C0-generic homeomorphisms and, in particular, we deduce that chain recurrent classes of C0-generic homeomorphisms have the gluing orbit property.uBibliorumBessa, MarioTorres, Maria JoanaVarandas, Paulo2020-02-04T17:27:46Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9018enghttps://doi.org/10.1016/j.na.2018.06.002metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:36Zoai:ubibliorum.ubi.pt:10400.6/9018Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:16.417824Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the periodic orbits, shadowing and strong transitivity of continuous flows |
title |
On the periodic orbits, shadowing and strong transitivity of continuous flows |
spellingShingle |
On the periodic orbits, shadowing and strong transitivity of continuous flows Bessa, Mario Gluing orbit property Shadowing Periodic orbits |
title_short |
On the periodic orbits, shadowing and strong transitivity of continuous flows |
title_full |
On the periodic orbits, shadowing and strong transitivity of continuous flows |
title_fullStr |
On the periodic orbits, shadowing and strong transitivity of continuous flows |
title_full_unstemmed |
On the periodic orbits, shadowing and strong transitivity of continuous flows |
title_sort |
On the periodic orbits, shadowing and strong transitivity of continuous flows |
author |
Bessa, Mario |
author_facet |
Bessa, Mario Torres, Maria Joana Varandas, Paulo |
author_role |
author |
author2 |
Torres, Maria Joana Varandas, Paulo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Bessa, Mario Torres, Maria Joana Varandas, Paulo |
dc.subject.por.fl_str_mv |
Gluing orbit property Shadowing Periodic orbits |
topic |
Gluing orbit property Shadowing Periodic orbits |
description |
We prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in Bomfim and Varandas (2015). In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic orbits hold for a C0-Baire generic subset of Lipschitz vector fields, that generate continuous flows. Similar results also hold for C0-generic homeomorphisms and, in particular, we deduce that chain recurrent classes of C0-generic homeomorphisms have the gluing orbit property. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2020-02-04T17:27:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/9018 |
url |
http://hdl.handle.net/10400.6/9018 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1016/j.na.2018.06.002 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136385259536384 |