On the periodic orbits, shadowing and strong transitivity of continuous flows

Detalhes bibliográficos
Autor(a) principal: Bessa, Mario
Data de Publicação: 2018
Outros Autores: Torres, Maria Joana, Varandas, Paulo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/9018
Resumo: We prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in Bomfim and Varandas (2015). In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic orbits hold for a C0-Baire generic subset of Lipschitz vector fields, that generate continuous flows. Similar results also hold for C0-generic homeomorphisms and, in particular, we deduce that chain recurrent classes of C0-generic homeomorphisms have the gluing orbit property.
id RCAP_561ff1451f90b26557cce8442636715a
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/9018
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the periodic orbits, shadowing and strong transitivity of continuous flowsGluing orbit propertyShadowingPeriodic orbitsWe prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in Bomfim and Varandas (2015). In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic orbits hold for a C0-Baire generic subset of Lipschitz vector fields, that generate continuous flows. Similar results also hold for C0-generic homeomorphisms and, in particular, we deduce that chain recurrent classes of C0-generic homeomorphisms have the gluing orbit property.uBibliorumBessa, MarioTorres, Maria JoanaVarandas, Paulo2020-02-04T17:27:46Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9018enghttps://doi.org/10.1016/j.na.2018.06.002metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:36Zoai:ubibliorum.ubi.pt:10400.6/9018Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:16.417824Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the periodic orbits, shadowing and strong transitivity of continuous flows
title On the periodic orbits, shadowing and strong transitivity of continuous flows
spellingShingle On the periodic orbits, shadowing and strong transitivity of continuous flows
Bessa, Mario
Gluing orbit property
Shadowing
Periodic orbits
title_short On the periodic orbits, shadowing and strong transitivity of continuous flows
title_full On the periodic orbits, shadowing and strong transitivity of continuous flows
title_fullStr On the periodic orbits, shadowing and strong transitivity of continuous flows
title_full_unstemmed On the periodic orbits, shadowing and strong transitivity of continuous flows
title_sort On the periodic orbits, shadowing and strong transitivity of continuous flows
author Bessa, Mario
author_facet Bessa, Mario
Torres, Maria Joana
Varandas, Paulo
author_role author
author2 Torres, Maria Joana
Varandas, Paulo
author2_role author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Bessa, Mario
Torres, Maria Joana
Varandas, Paulo
dc.subject.por.fl_str_mv Gluing orbit property
Shadowing
Periodic orbits
topic Gluing orbit property
Shadowing
Periodic orbits
description We prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in Bomfim and Varandas (2015). In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic orbits hold for a C0-Baire generic subset of Lipschitz vector fields, that generate continuous flows. Similar results also hold for C0-generic homeomorphisms and, in particular, we deduce that chain recurrent classes of C0-generic homeomorphisms have the gluing orbit property.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2020-02-04T17:27:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/9018
url http://hdl.handle.net/10400.6/9018
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.1016/j.na.2018.06.002
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136385259536384