A hyperbolic conservation law and particle systems

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Patrícia
Data de Publicação: 2010
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/11842
Resumo: In these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity – the density of particles p(t,.). This equation is a hyperbolic conservation law of type ətp(p, u) + vF(p(t, u)) = 0, where the flux F is a concave function. Taking these systems evolving on the Euler time scale tN, a central limit theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system in a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than tN 4=3, there is still no temporal evolution. As a consequence, the current across a characteristic vanishes up to this longer time scale.
id RCAP_5a3f612d0d607645a4c7534a607566cf
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/11842
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A hyperbolic conservation law and particle systemsHyperbolic conservation lawHydrodynamic limitAsymmetric simple exclusionAsymmetric zero-rangeEquilibrium fluctuationsIn these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity – the density of particles p(t,.). This equation is a hyperbolic conservation law of type ətp(p, u) + vF(p(t, u)) = 0, where the flux F is a concave function. Taking these systems evolving on the Euler time scale tN, a central limit theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system in a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than tN 4=3, there is still no temporal evolution. As a consequence, the current across a characteristic vanishes up to this longer time scale.Fundação para a Ciência e a Tecnologia (FCT) - bolsa SFRH/BPD/39991/2007Fundação Calouste Gulbenkian - projecto "Hydrodynamic limit of particle systems"Taylor and FrancisUniversidade do MinhoGonçalves, Patrícia20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11842engGONÇALVES, Patricia – A hyperbolic conservation law and Particle Systems. “Journal of Difference Equations and Applications” [Em linha]. [Consult. 11 Jan. 2011]. Disponível em WWW:<URL: http://www.informaworld.com/smpp/section?content=a930792520&fulltext=713240928>. ISSN 1563-5120.1023-6198http://dx.doi.org/10.1080/10236190903382657info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:22:49Zoai:repositorium.sdum.uminho.pt:1822/11842Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:16:25.344534Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A hyperbolic conservation law and particle systems
title A hyperbolic conservation law and particle systems
spellingShingle A hyperbolic conservation law and particle systems
Gonçalves, Patrícia
Hyperbolic conservation law
Hydrodynamic limit
Asymmetric simple exclusion
Asymmetric zero-range
Equilibrium fluctuations
title_short A hyperbolic conservation law and particle systems
title_full A hyperbolic conservation law and particle systems
title_fullStr A hyperbolic conservation law and particle systems
title_full_unstemmed A hyperbolic conservation law and particle systems
title_sort A hyperbolic conservation law and particle systems
author Gonçalves, Patrícia
author_facet Gonçalves, Patrícia
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Patrícia
dc.subject.por.fl_str_mv Hyperbolic conservation law
Hydrodynamic limit
Asymmetric simple exclusion
Asymmetric zero-range
Equilibrium fluctuations
topic Hyperbolic conservation law
Hydrodynamic limit
Asymmetric simple exclusion
Asymmetric zero-range
Equilibrium fluctuations
description In these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity – the density of particles p(t,.). This equation is a hyperbolic conservation law of type ətp(p, u) + vF(p(t, u)) = 0, where the flux F is a concave function. Taking these systems evolving on the Euler time scale tN, a central limit theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system in a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than tN 4=3, there is still no temporal evolution. As a consequence, the current across a characteristic vanishes up to this longer time scale.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/11842
url http://hdl.handle.net/1822/11842
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv GONÇALVES, Patricia – A hyperbolic conservation law and Particle Systems. “Journal of Difference Equations and Applications” [Em linha]. [Consult. 11 Jan. 2011]. Disponível em WWW:<URL: http://www.informaworld.com/smpp/section?content=a930792520&fulltext=713240928>. ISSN 1563-5120.
1023-6198
http://dx.doi.org/10.1080/10236190903382657
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor and Francis
publisher.none.fl_str_mv Taylor and Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132613283151872