Altered motivation masks appetitive learning potential of obese mice

Detalhes bibliográficos
Autor(a) principal: Harb, Mazen R.
Data de Publicação: 2014
Outros Autores: Almeida, Osborne F. X.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/61987
Resumo: Eating depends strongly on learning processes which, in turn, depend on motivation. Conditioned learning, where individuals associate environmental cues with receipt of a reward, forms an important part of hedonic mechanisms; the latter contribute to the development of human overweight and obesity by driving excessive eating in what may become a vicious cycle. Although mice are commonly used to explore the regulation of human appetite, it is not known whether their conditioned learning of food rewards varies as a function of body mass. To address this, groups of adult male mice of differing body weights were tested two appetitive conditioning paradigms (pavlovian and operant) as well as in food retrieval and hedonic preference tests in an attempt to dissect the respective roles of learning/motivation and energy state in the regulation of feeding behavior. We found that (i) the rate of pavlovian conditioning to an appetitive reward develops as an inverse function of body weight; (ii) higher body weight associates with increased latency to collect food reward; and (iii) mice with lower body weights are more motivated to work for a food reward, as compared to animals with higher body weights. Interestingly, as compared to controls, overweight and obese mice consumed smaller amounts of palatable foods (isocaloric milk or sucrose, in either the presence or absence of their respective maintenance diets: standard, low fat-high carbohydrate or high fat-high carbohydrate). Notably, however, all groups adjusted their consumption of the different food types, such that their body weight-corrected daily intake of calories remained constant. Thus, overeating in mice does not reflect a reward deficiency syndrome and, in contrast to humans, mice regulate their caloric intake according to metabolic status rather than to the hedonic properties of a particular food. Together, these observations demonstrate that excess weight masks the capacity for appetitive learning in the mouse.
id RCAP_5b1ba31229ccec5632d826e55d55b628
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/61987
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Altered motivation masks appetitive learning potential of obese miceAssociative learningPavlovian conditioningInstrumental conditioningDiet-induced obesityHedonic preferenceMotivationBody weight regulationScience & TechnologyEating depends strongly on learning processes which, in turn, depend on motivation. Conditioned learning, where individuals associate environmental cues with receipt of a reward, forms an important part of hedonic mechanisms; the latter contribute to the development of human overweight and obesity by driving excessive eating in what may become a vicious cycle. Although mice are commonly used to explore the regulation of human appetite, it is not known whether their conditioned learning of food rewards varies as a function of body mass. To address this, groups of adult male mice of differing body weights were tested two appetitive conditioning paradigms (pavlovian and operant) as well as in food retrieval and hedonic preference tests in an attempt to dissect the respective roles of learning/motivation and energy state in the regulation of feeding behavior. We found that (i) the rate of pavlovian conditioning to an appetitive reward develops as an inverse function of body weight; (ii) higher body weight associates with increased latency to collect food reward; and (iii) mice with lower body weights are more motivated to work for a food reward, as compared to animals with higher body weights. Interestingly, as compared to controls, overweight and obese mice consumed smaller amounts of palatable foods (isocaloric milk or sucrose, in either the presence or absence of their respective maintenance diets: standard, low fat-high carbohydrate or high fat-high carbohydrate). Notably, however, all groups adjusted their consumption of the different food types, such that their body weight-corrected daily intake of calories remained constant. Thus, overeating in mice does not reflect a reward deficiency syndrome and, in contrast to humans, mice regulate their caloric intake according to metabolic status rather than to the hedonic properties of a particular food. Together, these observations demonstrate that excess weight masks the capacity for appetitive learning in the mouse.Mazen R. Harb was supported by a doctoral fellowship from the EU Marie Curie Initial Training Program NINA and by the Max Planck Society. The studies were partly funded by the EU (FP7) Switchbox Consortium (to Osborne F. X. Almeida).Frontiers MediaUniversidade do MinhoHarb, Mazen R.Almeida, Osborne F. X.201410000-01-01T00:00:00Z2014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/61987eng1662-51531662-515310.3389/fnbeh.2014.00377info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:42:42Zoai:repositorium.sdum.uminho.pt:1822/61987Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:40:00.861331Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Altered motivation masks appetitive learning potential of obese mice
title Altered motivation masks appetitive learning potential of obese mice
spellingShingle Altered motivation masks appetitive learning potential of obese mice
Harb, Mazen R.
Associative learning
Pavlovian conditioning
Instrumental conditioning
Diet-induced obesity
Hedonic preference
Motivation
Body weight regulation
Science & Technology
title_short Altered motivation masks appetitive learning potential of obese mice
title_full Altered motivation masks appetitive learning potential of obese mice
title_fullStr Altered motivation masks appetitive learning potential of obese mice
title_full_unstemmed Altered motivation masks appetitive learning potential of obese mice
title_sort Altered motivation masks appetitive learning potential of obese mice
author Harb, Mazen R.
author_facet Harb, Mazen R.
Almeida, Osborne F. X.
author_role author
author2 Almeida, Osborne F. X.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Harb, Mazen R.
Almeida, Osborne F. X.
dc.subject.por.fl_str_mv Associative learning
Pavlovian conditioning
Instrumental conditioning
Diet-induced obesity
Hedonic preference
Motivation
Body weight regulation
Science & Technology
topic Associative learning
Pavlovian conditioning
Instrumental conditioning
Diet-induced obesity
Hedonic preference
Motivation
Body weight regulation
Science & Technology
description Eating depends strongly on learning processes which, in turn, depend on motivation. Conditioned learning, where individuals associate environmental cues with receipt of a reward, forms an important part of hedonic mechanisms; the latter contribute to the development of human overweight and obesity by driving excessive eating in what may become a vicious cycle. Although mice are commonly used to explore the regulation of human appetite, it is not known whether their conditioned learning of food rewards varies as a function of body mass. To address this, groups of adult male mice of differing body weights were tested two appetitive conditioning paradigms (pavlovian and operant) as well as in food retrieval and hedonic preference tests in an attempt to dissect the respective roles of learning/motivation and energy state in the regulation of feeding behavior. We found that (i) the rate of pavlovian conditioning to an appetitive reward develops as an inverse function of body weight; (ii) higher body weight associates with increased latency to collect food reward; and (iii) mice with lower body weights are more motivated to work for a food reward, as compared to animals with higher body weights. Interestingly, as compared to controls, overweight and obese mice consumed smaller amounts of palatable foods (isocaloric milk or sucrose, in either the presence or absence of their respective maintenance diets: standard, low fat-high carbohydrate or high fat-high carbohydrate). Notably, however, all groups adjusted their consumption of the different food types, such that their body weight-corrected daily intake of calories remained constant. Thus, overeating in mice does not reflect a reward deficiency syndrome and, in contrast to humans, mice regulate their caloric intake according to metabolic status rather than to the hedonic properties of a particular food. Together, these observations demonstrate that excess weight masks the capacity for appetitive learning in the mouse.
publishDate 2014
dc.date.none.fl_str_mv 10000-01-01T00:00:00Z
2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/61987
url http://hdl.handle.net/1822/61987
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1662-5153
1662-5153
10.3389/fnbeh.2014.00377
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132943995633664