Space Mapping: Models, Sensitivities, and Trust-Regions Methods

Detalhes bibliográficos
Autor(a) principal: Vicente, Luís N.
Data de Publicação: 2003
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/7749
https://doi.org/10.1023/A:1023968629245
Resumo: The goal of this paper is to organize some of the mathematical and algorithmic aspects of the space-mapping technique for continuous optimization with expensive function evaluations. First, we consider the mapping from the fine space to the coarse space when the models are vector-valued functions and when the space-mapping (nonlinear) least-squares residual is nonzero. We show how the sensitivities of the space mapping can be used to deal with space-mapping surrogates of the fine model. We derive a framework where it is possible to design globally convergent trust-region methods to minimize such fine-model surrogates.
id RCAP_69e67552f122fc33c8a098ea38ed65ec
oai_identifier_str oai:estudogeral.uc.pt:10316/7749
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Space Mapping: Models, Sensitivities, and Trust-Regions MethodsThe goal of this paper is to organize some of the mathematical and algorithmic aspects of the space-mapping technique for continuous optimization with expensive function evaluations. First, we consider the mapping from the fine space to the coarse space when the models are vector-valued functions and when the space-mapping (nonlinear) least-squares residual is nonzero. We show how the sensitivities of the space mapping can be used to deal with space-mapping surrogates of the fine model. We derive a framework where it is possible to design globally convergent trust-region methods to minimize such fine-model surrogates.2003info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7749http://hdl.handle.net/10316/7749https://doi.org/10.1023/A:1023968629245engOptimization and Engineering. 4:3 (2003) 159-175Vicente, Luís N.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-09T10:31:32Zoai:estudogeral.uc.pt:10316/7749Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:43.840458Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Space Mapping: Models, Sensitivities, and Trust-Regions Methods
title Space Mapping: Models, Sensitivities, and Trust-Regions Methods
spellingShingle Space Mapping: Models, Sensitivities, and Trust-Regions Methods
Vicente, Luís N.
title_short Space Mapping: Models, Sensitivities, and Trust-Regions Methods
title_full Space Mapping: Models, Sensitivities, and Trust-Regions Methods
title_fullStr Space Mapping: Models, Sensitivities, and Trust-Regions Methods
title_full_unstemmed Space Mapping: Models, Sensitivities, and Trust-Regions Methods
title_sort Space Mapping: Models, Sensitivities, and Trust-Regions Methods
author Vicente, Luís N.
author_facet Vicente, Luís N.
author_role author
dc.contributor.author.fl_str_mv Vicente, Luís N.
description The goal of this paper is to organize some of the mathematical and algorithmic aspects of the space-mapping technique for continuous optimization with expensive function evaluations. First, we consider the mapping from the fine space to the coarse space when the models are vector-valued functions and when the space-mapping (nonlinear) least-squares residual is nonzero. We show how the sensitivities of the space mapping can be used to deal with space-mapping surrogates of the fine model. We derive a framework where it is possible to design globally convergent trust-region methods to minimize such fine-model surrogates.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/7749
http://hdl.handle.net/10316/7749
https://doi.org/10.1023/A:1023968629245
url http://hdl.handle.net/10316/7749
https://doi.org/10.1023/A:1023968629245
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Optimization and Engineering. 4:3 (2003) 159-175
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897600008192