Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components

Detalhes bibliográficos
Autor(a) principal: Silva, D. J.
Data de Publicação: 2019
Outros Autores: Amaral, J. S., Amaral, V. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36963
Resumo: So far, all ferroic-based refrigerator prototypes have relied either in fluids or thermally switchable components as main heat exchangers, which brings some issues in terms of their applicability, such as the use of pumps for moving the fluid and the availability of thermally switchable components. We show that such heat exchangers are not necessary if field dynamics are explored. By using the example of magnetocaloric refrigeration, we show numerically that the operation of a simple apparatus constituted only by a magnetocaloric material and a magnet sweeping at a given frequency results in refrigeration. With the optimization of the type of motion, resting times after the complete application and removal of the magnetic field and frequency, a temperature span of 0.87 K is reached, which represents  ∼ 20% of the maximum adiabatic temperature span of the material used in modeling, gadolinium.
id RCAP_7637ff7bd41f52fcb069bc9fb666fbd3
oai_identifier_str oai:ria.ua.pt:10773/36963
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable componentsSolid state refrigerationFerroic refrigerationMagnetocaloric effectMagnetic fieldSo far, all ferroic-based refrigerator prototypes have relied either in fluids or thermally switchable components as main heat exchangers, which brings some issues in terms of their applicability, such as the use of pumps for moving the fluid and the availability of thermally switchable components. We show that such heat exchangers are not necessary if field dynamics are explored. By using the example of magnetocaloric refrigeration, we show numerically that the operation of a simple apparatus constituted only by a magnetocaloric material and a magnet sweeping at a given frequency results in refrigeration. With the optimization of the type of motion, resting times after the complete application and removal of the magnetic field and frequency, a temperature span of 0.87 K is reached, which represents  ∼ 20% of the maximum adiabatic temperature span of the material used in modeling, gadolinium.Elsevier2023-04-13T08:07:31Z2019-05-01T00:00:00Z2019-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36963eng0140-700710.1016/j.ijrefrig.2019.02.029Silva, D. J.Amaral, J. S.Amaral, V. S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:11:19Zoai:ria.ua.pt:10773/36963Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:39.483745Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components
title Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components
spellingShingle Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components
Silva, D. J.
Solid state refrigeration
Ferroic refrigeration
Magnetocaloric effect
Magnetic field
title_short Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components
title_full Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components
title_fullStr Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components
title_full_unstemmed Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components
title_sort Cooling by sweeping: a new operation method to achieve ferroic refrigeration without fluids or thermally switchable components
author Silva, D. J.
author_facet Silva, D. J.
Amaral, J. S.
Amaral, V. S.
author_role author
author2 Amaral, J. S.
Amaral, V. S.
author2_role author
author
dc.contributor.author.fl_str_mv Silva, D. J.
Amaral, J. S.
Amaral, V. S.
dc.subject.por.fl_str_mv Solid state refrigeration
Ferroic refrigeration
Magnetocaloric effect
Magnetic field
topic Solid state refrigeration
Ferroic refrigeration
Magnetocaloric effect
Magnetic field
description So far, all ferroic-based refrigerator prototypes have relied either in fluids or thermally switchable components as main heat exchangers, which brings some issues in terms of their applicability, such as the use of pumps for moving the fluid and the availability of thermally switchable components. We show that such heat exchangers are not necessary if field dynamics are explored. By using the example of magnetocaloric refrigeration, we show numerically that the operation of a simple apparatus constituted only by a magnetocaloric material and a magnet sweeping at a given frequency results in refrigeration. With the optimization of the type of motion, resting times after the complete application and removal of the magnetic field and frequency, a temperature span of 0.87 K is reached, which represents  ∼ 20% of the maximum adiabatic temperature span of the material used in modeling, gadolinium.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-01T00:00:00Z
2019-05
2023-04-13T08:07:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36963
url http://hdl.handle.net/10773/36963
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0140-7007
10.1016/j.ijrefrig.2019.02.029
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137731145629696