Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications

Detalhes bibliográficos
Autor(a) principal: Martins, Ana M.
Data de Publicação: 2008
Outros Autores: Santos, M. I., Azevedo, Helena S., Malafaya, P. B., Reis, R. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/14132
Resumo: This work describes the development of a biodegradable matrix, based on chitosan and starch, with the ability to form a porous structure in situ due to the attack by specific enzymes present in the human body (a-amylase and lysozyme). Scaffolds with three different compositions were developed: chitosan (C100) and chitosan/starch (CS80-20, CS60-40). Compressive test results showed that these materials exhibit very promising mechanical properties, namely a high modulus in both the dry and wet states. The compressive modulus in the dry state for C100 was 580 ± 33 MPa, CS80-20 (402 ± 62 MPa) and CS60-40 (337 ± 78 MPa). Degradation studies were performed using a-amylase and/or lysozyme at concentrations similar to those found in human serum, at 37 C for up to 90 days. Scanning electron micrographs showed that enzymatic degradation caused a porous structure to be formed, indicating the potential of this methodology to obtain in situ forming scaffolds. In order to evaluate the biocompatibility of the scaffolds, extracts and direct contact tests were performed. Results with the MTT test showed that the extracts of the materials were clearly non-toxic to L929 fibroblast cells. Analysis of cell adhesion and morphology of seeded osteoblastic-like cells in direct contact tests showed that at day 7 the number of cells on CS80-20 and CS60-40 was noticeably higher than that on C100, which suggests that starch containing materials may promote cell adhesion and proliferation. This combination of properties seems to be a very promising approach to obtain scaffolds with gradual in vivo pore forming capability for bone tissue engineering applications.
id RCAP_7875cfa2dd7f59b0cd6864d544d27d40
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/14132
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applicationsNatural origin scaffoldsChitosanStarchEnzymesIn situ pore formationScience & TechnologyThis work describes the development of a biodegradable matrix, based on chitosan and starch, with the ability to form a porous structure in situ due to the attack by specific enzymes present in the human body (a-amylase and lysozyme). Scaffolds with three different compositions were developed: chitosan (C100) and chitosan/starch (CS80-20, CS60-40). Compressive test results showed that these materials exhibit very promising mechanical properties, namely a high modulus in both the dry and wet states. The compressive modulus in the dry state for C100 was 580 ± 33 MPa, CS80-20 (402 ± 62 MPa) and CS60-40 (337 ± 78 MPa). Degradation studies were performed using a-amylase and/or lysozyme at concentrations similar to those found in human serum, at 37 C for up to 90 days. Scanning electron micrographs showed that enzymatic degradation caused a porous structure to be formed, indicating the potential of this methodology to obtain in situ forming scaffolds. In order to evaluate the biocompatibility of the scaffolds, extracts and direct contact tests were performed. Results with the MTT test showed that the extracts of the materials were clearly non-toxic to L929 fibroblast cells. Analysis of cell adhesion and morphology of seeded osteoblastic-like cells in direct contact tests showed that at day 7 the number of cells on CS80-20 and CS60-40 was noticeably higher than that on C100, which suggests that starch containing materials may promote cell adhesion and proliferation. This combination of properties seems to be a very promising approach to obtain scaffolds with gradual in vivo pore forming capability for bone tissue engineering applications.This work was supported by the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the European STREP HIPPOCRATES (NMP3-CT-2003-505758) and the Portuguese Foundation for Science and Technology (FCT) through POCTI and/or FEDER programmes.ElsevierUniversidade do MinhoMartins, Ana M.Santos, M. I.Azevedo, Helena S.Malafaya, P. B.Reis, R. L.20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/14132eng1742-706110.1016/j.actbio.2008.06.004info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:12:02Zoai:repositorium.sdum.uminho.pt:1822/14132Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:03:55.244947Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
title Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
spellingShingle Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
Martins, Ana M.
Natural origin scaffolds
Chitosan
Starch
Enzymes
In situ pore formation
Science & Technology
title_short Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
title_full Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
title_fullStr Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
title_full_unstemmed Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
title_sort Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
author Martins, Ana M.
author_facet Martins, Ana M.
Santos, M. I.
Azevedo, Helena S.
Malafaya, P. B.
Reis, R. L.
author_role author
author2 Santos, M. I.
Azevedo, Helena S.
Malafaya, P. B.
Reis, R. L.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Martins, Ana M.
Santos, M. I.
Azevedo, Helena S.
Malafaya, P. B.
Reis, R. L.
dc.subject.por.fl_str_mv Natural origin scaffolds
Chitosan
Starch
Enzymes
In situ pore formation
Science & Technology
topic Natural origin scaffolds
Chitosan
Starch
Enzymes
In situ pore formation
Science & Technology
description This work describes the development of a biodegradable matrix, based on chitosan and starch, with the ability to form a porous structure in situ due to the attack by specific enzymes present in the human body (a-amylase and lysozyme). Scaffolds with three different compositions were developed: chitosan (C100) and chitosan/starch (CS80-20, CS60-40). Compressive test results showed that these materials exhibit very promising mechanical properties, namely a high modulus in both the dry and wet states. The compressive modulus in the dry state for C100 was 580 ± 33 MPa, CS80-20 (402 ± 62 MPa) and CS60-40 (337 ± 78 MPa). Degradation studies were performed using a-amylase and/or lysozyme at concentrations similar to those found in human serum, at 37 C for up to 90 days. Scanning electron micrographs showed that enzymatic degradation caused a porous structure to be formed, indicating the potential of this methodology to obtain in situ forming scaffolds. In order to evaluate the biocompatibility of the scaffolds, extracts and direct contact tests were performed. Results with the MTT test showed that the extracts of the materials were clearly non-toxic to L929 fibroblast cells. Analysis of cell adhesion and morphology of seeded osteoblastic-like cells in direct contact tests showed that at day 7 the number of cells on CS80-20 and CS60-40 was noticeably higher than that on C100, which suggests that starch containing materials may promote cell adhesion and proliferation. This combination of properties seems to be a very promising approach to obtain scaffolds with gradual in vivo pore forming capability for bone tissue engineering applications.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/14132
url http://hdl.handle.net/1822/14132
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1742-7061
10.1016/j.actbio.2008.06.004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132446711611392