Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects

Detalhes bibliográficos
Autor(a) principal: Rodrigues, AC
Data de Publicação: 2005
Outros Autores: Wuertz, S, Brito, AG, L. F. Melo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/256
Resumo: Pseudomonas putida ATCC 17514 was used as a model strain to investigate the characteristics of bacterial growth in the presence of solid fluorene and phenanthrene. Despite the lower water-solubility of phenanthrene, P. putida degraded this polycyclic aromatic hydrocarbon (PAH) at a maximum observed rate of 1.4 +/- 0.1 mg L-1 h(-1), higher than the apparent degradation rate of fluorene, 0.8 +/- 0.07 mg L-1 h(-1). The role of physiological processes on the biodegradation of these PAHs was analyzed and two different uptake strategies were identified. Zeta potential measurements revealed that phenanthrene-grown cells were slightly more negatively charged (-57.5 +/- 4.7 mV) than fluorene-grown cells (-51.6 +/- 4.9 mV), but much more negatively charged than glucose-grown cells (-26.8 +/- 3.3 mV), suggesting that the PAH substrate induced modifications on the physical properties of bacterial surfaces. Furthermore, protein-to-exopolysaccharide ratios detected during bacterial growth on phenanthrene were typical of biofilms developed under physicochernical stress conditions, caused by the presence of sparingly water-soluble chemicals as the sole carbon and energy source for growth, the maximum value for TP/EPS during growth on phenanthrene (1.9) being lower than the one obtained with fluorene (5.5). Finally, confocal laser microscopy observations using a gfp-labeled derivative strain revealed that, in the presence of phenanthrene, P. putida::gfp cells formed a biofilm on accessible crystal surfaces, whereas in the presence of fluorene the strain grew randomly between the crystal clusters. The results showed that P. putida was able to overcome the lower aqueous solubility of phenanthrene by adhering to the solid PAH throughout the production of extracellular polymeric substances, thus promoting the availability and uptake of such a hydrophobic compound. (c) 2005 Wiley Periodicals, Inc.
id RCAP_86e0ebe451eb2153774c2879a023d30c
oai_identifier_str oai:repositorio-aberto.up.pt:10216/256
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspectsCiências TecnológicasTechnological sciencesPseudomonas putida ATCC 17514 was used as a model strain to investigate the characteristics of bacterial growth in the presence of solid fluorene and phenanthrene. Despite the lower water-solubility of phenanthrene, P. putida degraded this polycyclic aromatic hydrocarbon (PAH) at a maximum observed rate of 1.4 +/- 0.1 mg L-1 h(-1), higher than the apparent degradation rate of fluorene, 0.8 +/- 0.07 mg L-1 h(-1). The role of physiological processes on the biodegradation of these PAHs was analyzed and two different uptake strategies were identified. Zeta potential measurements revealed that phenanthrene-grown cells were slightly more negatively charged (-57.5 +/- 4.7 mV) than fluorene-grown cells (-51.6 +/- 4.9 mV), but much more negatively charged than glucose-grown cells (-26.8 +/- 3.3 mV), suggesting that the PAH substrate induced modifications on the physical properties of bacterial surfaces. Furthermore, protein-to-exopolysaccharide ratios detected during bacterial growth on phenanthrene were typical of biofilms developed under physicochernical stress conditions, caused by the presence of sparingly water-soluble chemicals as the sole carbon and energy source for growth, the maximum value for TP/EPS during growth on phenanthrene (1.9) being lower than the one obtained with fluorene (5.5). Finally, confocal laser microscopy observations using a gfp-labeled derivative strain revealed that, in the presence of phenanthrene, P. putida::gfp cells formed a biofilm on accessible crystal surfaces, whereas in the presence of fluorene the strain grew randomly between the crystal clusters. The results showed that P. putida was able to overcome the lower aqueous solubility of phenanthrene by adhering to the solid PAH throughout the production of extracellular polymeric substances, thus promoting the availability and uptake of such a hydrophobic compound. (c) 2005 Wiley Periodicals, Inc.20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/256eng0006-359210.1002/bit.20377Rodrigues, ACWuertz, SBrito, AGL. F. Meloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:10:36Zoai:repositorio-aberto.up.pt:10216/256Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:56:25.971616Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects
title Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects
spellingShingle Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects
Rodrigues, AC
Ciências Tecnológicas
Technological sciences
title_short Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects
title_full Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects
title_fullStr Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects
title_full_unstemmed Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects
title_sort Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects
author Rodrigues, AC
author_facet Rodrigues, AC
Wuertz, S
Brito, AG
L. F. Melo
author_role author
author2 Wuertz, S
Brito, AG
L. F. Melo
author2_role author
author
author
dc.contributor.author.fl_str_mv Rodrigues, AC
Wuertz, S
Brito, AG
L. F. Melo
dc.subject.por.fl_str_mv Ciências Tecnológicas
Technological sciences
topic Ciências Tecnológicas
Technological sciences
description Pseudomonas putida ATCC 17514 was used as a model strain to investigate the characteristics of bacterial growth in the presence of solid fluorene and phenanthrene. Despite the lower water-solubility of phenanthrene, P. putida degraded this polycyclic aromatic hydrocarbon (PAH) at a maximum observed rate of 1.4 +/- 0.1 mg L-1 h(-1), higher than the apparent degradation rate of fluorene, 0.8 +/- 0.07 mg L-1 h(-1). The role of physiological processes on the biodegradation of these PAHs was analyzed and two different uptake strategies were identified. Zeta potential measurements revealed that phenanthrene-grown cells were slightly more negatively charged (-57.5 +/- 4.7 mV) than fluorene-grown cells (-51.6 +/- 4.9 mV), but much more negatively charged than glucose-grown cells (-26.8 +/- 3.3 mV), suggesting that the PAH substrate induced modifications on the physical properties of bacterial surfaces. Furthermore, protein-to-exopolysaccharide ratios detected during bacterial growth on phenanthrene were typical of biofilms developed under physicochernical stress conditions, caused by the presence of sparingly water-soluble chemicals as the sole carbon and energy source for growth, the maximum value for TP/EPS during growth on phenanthrene (1.9) being lower than the one obtained with fluorene (5.5). Finally, confocal laser microscopy observations using a gfp-labeled derivative strain revealed that, in the presence of phenanthrene, P. putida::gfp cells formed a biofilm on accessible crystal surfaces, whereas in the presence of fluorene the strain grew randomly between the crystal clusters. The results showed that P. putida was able to overcome the lower aqueous solubility of phenanthrene by adhering to the solid PAH throughout the production of extracellular polymeric substances, thus promoting the availability and uptake of such a hydrophobic compound. (c) 2005 Wiley Periodicals, Inc.
publishDate 2005
dc.date.none.fl_str_mv 2005
2005-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/256
url https://hdl.handle.net/10216/256
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0006-3592
10.1002/bit.20377
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135884850757632