A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded

Detalhes bibliográficos
Autor(a) principal: Milani, G.
Data de Publicação: 2010
Outros Autores: Lourenço, Paulo B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/17234
Resumo: A kinematic rigid-plastic homogenization model for the limit analysis of masonry walls arranged in random texture and out-of-plane loaded is proposed. The model is the continuation of a previous work by the authors in which masonry in-plane behavior was investigated. In the model, blocks constituting a masonry wall are supposed infinitely resistant with a Gaussian distribution of height and length, whereas joints are reduced to interfaces with frictional behavior and limited tensile and compressive strength. Block by block, a representative element of volume (REV) is considered, constituted by a central block interconnected with its neighbors by means of rigid plastic interfaces. Two different classes of problems are investigated, the first consisting of full stochastic REV assemblages without horizontal and vertical alignment of joints, the second assuming the presence of a horizontal alignment along bed joints, i.e. allowing blocks height variability only row by row. A sub-class of elementary deformation modes is a-priori chosen in the REV, mimicking typical failures due to joint cracking and crushing. The model is characterized by a few material parameters and it is therefore particularly suited to perform large scale Monte Carlo simulations. Masonry strength domains are obtained equating the power dissipated in the heterogeneous model with the power dissipated by a fictitious homogeneous macroscopic plate. A stochastic estimation of out-of-plane masonry strength domains (both bending moments and torsion are considered) accounting for the geometrical statistical variability of blocks dimensions is obtained with the proposed model. The case of deterministic block height (quasi-periodic texture) can be obtained as a subclass of this latter case. As an important benchmark, the case in which joints obey a Mohr-Coulomb failure criterion is also tested and compared with results obtained assuming a more complex interfacial behavior for mortar. Masonry homogenized failure surfaces are finally implemented in an upper bound Finite Element (FE) limit analysis code. Firstly, to validate the model proposed, two small scale structural examples of practical interest are considered, relying in masonry panels in two-way out-of-plane bending. In both cases, failure load distributions and failure mechanisms provided by the homogenization model are compared with those obtained through a heterogeneous approach. Finally, in order to show the capabilities of the approach proposed when dealing with large scale structures, the ultimate behavior prediction of a Romanesque masonry church façade located in Portugal and arranged in irregular texture is presented. Comparisons with Finite Element heterogeneous approaches and “at hand” calculations show that reliable predictions of the load bearing capacity of real large scale structures may be obtained with a very limited computational effort.
id RCAP_8b4785164a6dff5d5e31c40827dac117
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/17234
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loadedMasonryOut-of-plane loadsSimplified homogenizationRandom patternMonte Carlo simulationsScience & TechnologyA kinematic rigid-plastic homogenization model for the limit analysis of masonry walls arranged in random texture and out-of-plane loaded is proposed. The model is the continuation of a previous work by the authors in which masonry in-plane behavior was investigated. In the model, blocks constituting a masonry wall are supposed infinitely resistant with a Gaussian distribution of height and length, whereas joints are reduced to interfaces with frictional behavior and limited tensile and compressive strength. Block by block, a representative element of volume (REV) is considered, constituted by a central block interconnected with its neighbors by means of rigid plastic interfaces. Two different classes of problems are investigated, the first consisting of full stochastic REV assemblages without horizontal and vertical alignment of joints, the second assuming the presence of a horizontal alignment along bed joints, i.e. allowing blocks height variability only row by row. A sub-class of elementary deformation modes is a-priori chosen in the REV, mimicking typical failures due to joint cracking and crushing. The model is characterized by a few material parameters and it is therefore particularly suited to perform large scale Monte Carlo simulations. Masonry strength domains are obtained equating the power dissipated in the heterogeneous model with the power dissipated by a fictitious homogeneous macroscopic plate. A stochastic estimation of out-of-plane masonry strength domains (both bending moments and torsion are considered) accounting for the geometrical statistical variability of blocks dimensions is obtained with the proposed model. The case of deterministic block height (quasi-periodic texture) can be obtained as a subclass of this latter case. As an important benchmark, the case in which joints obey a Mohr-Coulomb failure criterion is also tested and compared with results obtained assuming a more complex interfacial behavior for mortar. Masonry homogenized failure surfaces are finally implemented in an upper bound Finite Element (FE) limit analysis code. Firstly, to validate the model proposed, two small scale structural examples of practical interest are considered, relying in masonry panels in two-way out-of-plane bending. In both cases, failure load distributions and failure mechanisms provided by the homogenization model are compared with those obtained through a heterogeneous approach. Finally, in order to show the capabilities of the approach proposed when dealing with large scale structures, the ultimate behavior prediction of a Romanesque masonry church façade located in Portugal and arranged in irregular texture is presented. Comparisons with Finite Element heterogeneous approaches and “at hand” calculations show that reliable predictions of the load bearing capacity of real large scale structures may be obtained with a very limited computational effort.Pergamon-Elsevier Science LtdUniversidade do MinhoMilani, G.Lourenço, Paulo B.20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/17234eng0045-794910.1016/j.compstruc.2010.02.009DOI: http://dx.doi.org/10.1016/j.compstruc.2010.02.009info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:03:52Zoai:repositorium.sdum.uminho.pt:1822/17234Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:54:03.363100Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded
title A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded
spellingShingle A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded
Milani, G.
Masonry
Out-of-plane loads
Simplified homogenization
Random pattern
Monte Carlo simulations
Science & Technology
title_short A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded
title_full A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded
title_fullStr A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded
title_full_unstemmed A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded
title_sort A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded
author Milani, G.
author_facet Milani, G.
Lourenço, Paulo B.
author_role author
author2 Lourenço, Paulo B.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Milani, G.
Lourenço, Paulo B.
dc.subject.por.fl_str_mv Masonry
Out-of-plane loads
Simplified homogenization
Random pattern
Monte Carlo simulations
Science & Technology
topic Masonry
Out-of-plane loads
Simplified homogenization
Random pattern
Monte Carlo simulations
Science & Technology
description A kinematic rigid-plastic homogenization model for the limit analysis of masonry walls arranged in random texture and out-of-plane loaded is proposed. The model is the continuation of a previous work by the authors in which masonry in-plane behavior was investigated. In the model, blocks constituting a masonry wall are supposed infinitely resistant with a Gaussian distribution of height and length, whereas joints are reduced to interfaces with frictional behavior and limited tensile and compressive strength. Block by block, a representative element of volume (REV) is considered, constituted by a central block interconnected with its neighbors by means of rigid plastic interfaces. Two different classes of problems are investigated, the first consisting of full stochastic REV assemblages without horizontal and vertical alignment of joints, the second assuming the presence of a horizontal alignment along bed joints, i.e. allowing blocks height variability only row by row. A sub-class of elementary deformation modes is a-priori chosen in the REV, mimicking typical failures due to joint cracking and crushing. The model is characterized by a few material parameters and it is therefore particularly suited to perform large scale Monte Carlo simulations. Masonry strength domains are obtained equating the power dissipated in the heterogeneous model with the power dissipated by a fictitious homogeneous macroscopic plate. A stochastic estimation of out-of-plane masonry strength domains (both bending moments and torsion are considered) accounting for the geometrical statistical variability of blocks dimensions is obtained with the proposed model. The case of deterministic block height (quasi-periodic texture) can be obtained as a subclass of this latter case. As an important benchmark, the case in which joints obey a Mohr-Coulomb failure criterion is also tested and compared with results obtained assuming a more complex interfacial behavior for mortar. Masonry homogenized failure surfaces are finally implemented in an upper bound Finite Element (FE) limit analysis code. Firstly, to validate the model proposed, two small scale structural examples of practical interest are considered, relying in masonry panels in two-way out-of-plane bending. In both cases, failure load distributions and failure mechanisms provided by the homogenization model are compared with those obtained through a heterogeneous approach. Finally, in order to show the capabilities of the approach proposed when dealing with large scale structures, the ultimate behavior prediction of a Romanesque masonry church façade located in Portugal and arranged in irregular texture is presented. Comparisons with Finite Element heterogeneous approaches and “at hand” calculations show that reliable predictions of the load bearing capacity of real large scale structures may be obtained with a very limited computational effort.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/17234
url http://hdl.handle.net/1822/17234
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0045-7949
10.1016/j.compstruc.2010.02.009
DOI: http://dx.doi.org/10.1016/j.compstruc.2010.02.009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132321324990464