Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor

Detalhes bibliográficos
Autor(a) principal: Belo, Isabel
Data de Publicação: 2003
Outros Autores: Pinheiro, Rita, Mota, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/1386
Resumo: Fed-batch is the dominating mode of operation in high-cell-density cultures of Saccharomyces cerevisae in processes such as the production of baker’s yeast and recombinant proteins, where the high oxygen demand of these cultures makes its supply an important and difficult task. The aim of this work was to study the use of hyperbaric air for oxygen mass transfer improvement on S. cerevisiae fed-batch cultivation. The effects of increased air pressure up to 1.5 MPa on cell behavior were investigated. The effects of oxygen and carbon dioxide were dissociated from the effects of total pressure by the use of pure oxygen and gas mixtures enriched with CO2. Fedbatch experiments were performed in a stirred tank reactor with a 600 mL stainless steel vessel. An exponential feeding profile at dilution rates up to 0.1 h-1 was used in order to ensure a subcritical flux of substrate and, consequently, to prevent ethanol formation due to glucose excess. The ethanol production observed at atmospheric pressure was reduced by the bioreactor pressurization up to 1.0 MPa. The maximum biomass yield, 0.5 g g-1 (cell mass produced per mass of glucose consumed) was attained whenever pressure was increased gradually through time. This demonstrates the adaptive behavior of the cells to the hyperbaric conditions. This work proved that hyperbaric air up to 1.0 MPa (0.2 MPa of oxygen partial pressure) could be applied to S. cerevisiae cultivation under low glucose flux. Above that critical oxygen partial pressure value, i.e., for oxygen pressures of 0.32 and 0.5 MPa, a drastic cell growth inhibition and viability loss were observed. The increase of carbon dioxide partial pressure in the gas mixture up to 48 kPa slightly decreased the overall cell mass yield but had negligible effects on cell viability.
id RCAP_94eacfab04a6d4225b986c56e65308d9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/1386
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactorScience & TechnologyFed-batch is the dominating mode of operation in high-cell-density cultures of Saccharomyces cerevisae in processes such as the production of baker’s yeast and recombinant proteins, where the high oxygen demand of these cultures makes its supply an important and difficult task. The aim of this work was to study the use of hyperbaric air for oxygen mass transfer improvement on S. cerevisiae fed-batch cultivation. The effects of increased air pressure up to 1.5 MPa on cell behavior were investigated. The effects of oxygen and carbon dioxide were dissociated from the effects of total pressure by the use of pure oxygen and gas mixtures enriched with CO2. Fedbatch experiments were performed in a stirred tank reactor with a 600 mL stainless steel vessel. An exponential feeding profile at dilution rates up to 0.1 h-1 was used in order to ensure a subcritical flux of substrate and, consequently, to prevent ethanol formation due to glucose excess. The ethanol production observed at atmospheric pressure was reduced by the bioreactor pressurization up to 1.0 MPa. The maximum biomass yield, 0.5 g g-1 (cell mass produced per mass of glucose consumed) was attained whenever pressure was increased gradually through time. This demonstrates the adaptive behavior of the cells to the hyperbaric conditions. This work proved that hyperbaric air up to 1.0 MPa (0.2 MPa of oxygen partial pressure) could be applied to S. cerevisiae cultivation under low glucose flux. Above that critical oxygen partial pressure value, i.e., for oxygen pressures of 0.32 and 0.5 MPa, a drastic cell growth inhibition and viability loss were observed. The increase of carbon dioxide partial pressure in the gas mixture up to 48 kPa slightly decreased the overall cell mass yield but had negligible effects on cell viability.American Chemical SocietyAmerican Institute of Chemical EngineersUniversidade do MinhoBelo, IsabelPinheiro, RitaMota, M.20032003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/1386eng"Biotechnology progress". 19:2 (2003) 665-671.8756-793810.1021/bp025706712675615info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:23:15Zoai:repositorium.sdum.uminho.pt:1822/1386Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:16:56.482819Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor
title Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor
spellingShingle Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor
Belo, Isabel
Science & Technology
title_short Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor
title_full Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor
title_fullStr Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor
title_full_unstemmed Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor
title_sort Fed-batch cultivation of saccharomyces cerevisiae in a hyperbaric bioreactor
author Belo, Isabel
author_facet Belo, Isabel
Pinheiro, Rita
Mota, M.
author_role author
author2 Pinheiro, Rita
Mota, M.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Belo, Isabel
Pinheiro, Rita
Mota, M.
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description Fed-batch is the dominating mode of operation in high-cell-density cultures of Saccharomyces cerevisae in processes such as the production of baker’s yeast and recombinant proteins, where the high oxygen demand of these cultures makes its supply an important and difficult task. The aim of this work was to study the use of hyperbaric air for oxygen mass transfer improvement on S. cerevisiae fed-batch cultivation. The effects of increased air pressure up to 1.5 MPa on cell behavior were investigated. The effects of oxygen and carbon dioxide were dissociated from the effects of total pressure by the use of pure oxygen and gas mixtures enriched with CO2. Fedbatch experiments were performed in a stirred tank reactor with a 600 mL stainless steel vessel. An exponential feeding profile at dilution rates up to 0.1 h-1 was used in order to ensure a subcritical flux of substrate and, consequently, to prevent ethanol formation due to glucose excess. The ethanol production observed at atmospheric pressure was reduced by the bioreactor pressurization up to 1.0 MPa. The maximum biomass yield, 0.5 g g-1 (cell mass produced per mass of glucose consumed) was attained whenever pressure was increased gradually through time. This demonstrates the adaptive behavior of the cells to the hyperbaric conditions. This work proved that hyperbaric air up to 1.0 MPa (0.2 MPa of oxygen partial pressure) could be applied to S. cerevisiae cultivation under low glucose flux. Above that critical oxygen partial pressure value, i.e., for oxygen pressures of 0.32 and 0.5 MPa, a drastic cell growth inhibition and viability loss were observed. The increase of carbon dioxide partial pressure in the gas mixture up to 48 kPa slightly decreased the overall cell mass yield but had negligible effects on cell viability.
publishDate 2003
dc.date.none.fl_str_mv 2003
2003-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/1386
url http://hdl.handle.net/1822/1386
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Biotechnology progress". 19:2 (2003) 665-671.
8756-7938
10.1021/bp0257067
12675615
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
American Institute of Chemical Engineers
publisher.none.fl_str_mv American Chemical Society
American Institute of Chemical Engineers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132620564463616