Volatility leveraging in heart rate: Health vs disease

Detalhes bibliográficos
Autor(a) principal: Rocha, AP
Data de Publicação: 2016
Outros Autores: Leite, A, Maria Eduarda Silva
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://repositorio-aberto.up.pt/handle/10216/103641
Resumo: Heart Rate Variability (HRV) data exhibit long memory and time-varying conditional variance (volatility). These characteristics are well captured using Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalised AutoRegressive Conditional Heteroscedastic (GARCH) errors, which are an extension of the AR models usual in the analysis of HRV. GARCHmod-els assume that volatility depends only on the magnitude of the shocks and not on their sign, meaning that positive and negative shocks have a symmetric effect on volatility. However, HRV recordings indicate further dependence of volatility on the lagged shocks. This work considers Exponential GARCH (EGARCH) models which assume that positive and negative shocks have an asymmetric effect (leverage effect) on the volatility, thus better copping with complex characteristics of HRV. ARFIMA-EGARCH models, combined with adaptive segmentation, are applied to 24 h HRV recordings of 30 subjects from the Noltisalis database: 10 healthy, 10 patients suffering from congestive heart failure and 10 heart transplanted patients. Overall, the results for the leverage parameter indicate that volatility responds asymmetrically to values of HRV under and over the mean. Moreover, decreased leverage parameter values for sick subjects, suggest that these models allow to discriminate between the different groups. © 2016 CCAL.
id RCAP_9504450b46b87fb58f6f3f1c57ee97ee
oai_identifier_str oai:repositorio-aberto.up.pt:10216/103641
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Volatility leveraging in heart rate: Health vs diseaseHeart Rate Variability (HRV) data exhibit long memory and time-varying conditional variance (volatility). These characteristics are well captured using Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalised AutoRegressive Conditional Heteroscedastic (GARCH) errors, which are an extension of the AR models usual in the analysis of HRV. GARCHmod-els assume that volatility depends only on the magnitude of the shocks and not on their sign, meaning that positive and negative shocks have a symmetric effect on volatility. However, HRV recordings indicate further dependence of volatility on the lagged shocks. This work considers Exponential GARCH (EGARCH) models which assume that positive and negative shocks have an asymmetric effect (leverage effect) on the volatility, thus better copping with complex characteristics of HRV. ARFIMA-EGARCH models, combined with adaptive segmentation, are applied to 24 h HRV recordings of 30 subjects from the Noltisalis database: 10 healthy, 10 patients suffering from congestive heart failure and 10 heart transplanted patients. Overall, the results for the leverage parameter indicate that volatility responds asymmetrically to values of HRV under and over the mean. Moreover, decreased leverage parameter values for sick subjects, suggest that these models allow to discriminate between the different groups. © 2016 CCAL.20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/103641engRocha, APLeite, AMaria Eduarda Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:05:03Zoai:repositorio-aberto.up.pt:10216/103641Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:54:20.834142Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Volatility leveraging in heart rate: Health vs disease
title Volatility leveraging in heart rate: Health vs disease
spellingShingle Volatility leveraging in heart rate: Health vs disease
Rocha, AP
title_short Volatility leveraging in heart rate: Health vs disease
title_full Volatility leveraging in heart rate: Health vs disease
title_fullStr Volatility leveraging in heart rate: Health vs disease
title_full_unstemmed Volatility leveraging in heart rate: Health vs disease
title_sort Volatility leveraging in heart rate: Health vs disease
author Rocha, AP
author_facet Rocha, AP
Leite, A
Maria Eduarda Silva
author_role author
author2 Leite, A
Maria Eduarda Silva
author2_role author
author
dc.contributor.author.fl_str_mv Rocha, AP
Leite, A
Maria Eduarda Silva
description Heart Rate Variability (HRV) data exhibit long memory and time-varying conditional variance (volatility). These characteristics are well captured using Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalised AutoRegressive Conditional Heteroscedastic (GARCH) errors, which are an extension of the AR models usual in the analysis of HRV. GARCHmod-els assume that volatility depends only on the magnitude of the shocks and not on their sign, meaning that positive and negative shocks have a symmetric effect on volatility. However, HRV recordings indicate further dependence of volatility on the lagged shocks. This work considers Exponential GARCH (EGARCH) models which assume that positive and negative shocks have an asymmetric effect (leverage effect) on the volatility, thus better copping with complex characteristics of HRV. ARFIMA-EGARCH models, combined with adaptive segmentation, are applied to 24 h HRV recordings of 30 subjects from the Noltisalis database: 10 healthy, 10 patients suffering from congestive heart failure and 10 heart transplanted patients. Overall, the results for the leverage parameter indicate that volatility responds asymmetrically to values of HRV under and over the mean. Moreover, decreased leverage parameter values for sick subjects, suggest that these models allow to discriminate between the different groups. © 2016 CCAL.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio-aberto.up.pt/handle/10216/103641
url https://repositorio-aberto.up.pt/handle/10216/103641
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135863546839040