Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis

Detalhes bibliográficos
Autor(a) principal: Girona-García, Antonio
Data de Publicação: 2021
Outros Autores: Vieira, Diana C. S., Silva, Joana, Fernández, Cristina, Robichaud, Peter R., Keizer, J. Jacob
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31263
Resumo: Wildfires are known to be one of the main causes of soil erosion and land degradation, and their impacts on ecosystems and society are expected to increase in the future due to changes in climate and land use. It is therefore vital to mitigate the increased hydrological and erosive response after wildfires to maintain the sustainability of ecosystems and protect the values at risk downstream from the fire-affected areas. Soil erosion mitigation treatments have been widely applied after wildfires but assessment of their effectiveness has been limited to local and regional-scale studies, whose conclusions may depend heavily on site-specific conditions. To overcome this limitation, a meta-analysis approach was applied to investigations of post-wildfire soil erosion mitigation treatments published in peer-reviewed journals. A meta-analysis database was compiled that consisted of 53 and 222 pairs of treated/untreated observations on post-fire runoff and erosion, respectively, extracted from 34 publications indexed in Scopus. The overall effectiveness of mitigation treatments, expressed as the quantitative metric ‘effect size’, was determined for both the runoff and erosion observations, and further analyzed for four different types of treatments (cover-based, barriers, seeding, and chemical treatments). The erosion observations involving cover-based treatments were analyzed for differences in effectiveness between 3 different types of mulch materials (straw, wood-based, and hydromulch) as well as between different application rates of straw and wood materials. Finally, the erosion observations were also analyzed for the overall effectiveness of post-fire year, burn severity, rainfall amount and erosivity, and ground cover. The meta-analysis results show that all four types of treatments significantly reduced post-fire soil erosion, but that only the cover and barrier treatments significantly reduced post-fire runoff. From the three different cover treatments, straw and wood mulches were significantly more effective in mitigating erosion than hydromulch. In addition, the effectiveness of both straw and wood mulches depended on their application rates. Straw mulching was less effective at rates below than above 200 g m−2, while mulching with wood materials at high rates (1300 to 1750 g m−2) produced more variable outcomes than lower rates. Results also suggest that the overall effectiveness of the treatments was greatest shortly after fire, in severely burned sites, providing or promoting the development of ground cover over 70%, and that it increased with increasing rainfall erosivity. It can be concluded that, in overall terms, the application of the studied post-fire erosion mitigation treatments represented a better choice than doing nothing, especially in sites where erosion is high. However, the meta-analysis highlights under-representation of studies on this topic outside of the USA, Spain and Portugal. It was also observed that most of the studies were conducted at hillslope scale and tested mulching (namely straw, wood and hydromulch) and/or barriers, while larger scales and other treatments were scarcely addressed. Further efforts need to be made in testing, from field and modeling studies, combinations of existing and/or emerging erosion mitigation treatments to ensure that the most adequate measures are applied after fires.
id RCAP_9591a7071ba33fcded14b9a48128d1f0
oai_identifier_str oai:ria.ua.pt:10773/31263
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysisWildfiresRunoffSediment lossesErosion controlMulchWildfires are known to be one of the main causes of soil erosion and land degradation, and their impacts on ecosystems and society are expected to increase in the future due to changes in climate and land use. It is therefore vital to mitigate the increased hydrological and erosive response after wildfires to maintain the sustainability of ecosystems and protect the values at risk downstream from the fire-affected areas. Soil erosion mitigation treatments have been widely applied after wildfires but assessment of their effectiveness has been limited to local and regional-scale studies, whose conclusions may depend heavily on site-specific conditions. To overcome this limitation, a meta-analysis approach was applied to investigations of post-wildfire soil erosion mitigation treatments published in peer-reviewed journals. A meta-analysis database was compiled that consisted of 53 and 222 pairs of treated/untreated observations on post-fire runoff and erosion, respectively, extracted from 34 publications indexed in Scopus. The overall effectiveness of mitigation treatments, expressed as the quantitative metric ‘effect size’, was determined for both the runoff and erosion observations, and further analyzed for four different types of treatments (cover-based, barriers, seeding, and chemical treatments). The erosion observations involving cover-based treatments were analyzed for differences in effectiveness between 3 different types of mulch materials (straw, wood-based, and hydromulch) as well as between different application rates of straw and wood materials. Finally, the erosion observations were also analyzed for the overall effectiveness of post-fire year, burn severity, rainfall amount and erosivity, and ground cover. The meta-analysis results show that all four types of treatments significantly reduced post-fire soil erosion, but that only the cover and barrier treatments significantly reduced post-fire runoff. From the three different cover treatments, straw and wood mulches were significantly more effective in mitigating erosion than hydromulch. In addition, the effectiveness of both straw and wood mulches depended on their application rates. Straw mulching was less effective at rates below than above 200 g m−2, while mulching with wood materials at high rates (1300 to 1750 g m−2) produced more variable outcomes than lower rates. Results also suggest that the overall effectiveness of the treatments was greatest shortly after fire, in severely burned sites, providing or promoting the development of ground cover over 70%, and that it increased with increasing rainfall erosivity. It can be concluded that, in overall terms, the application of the studied post-fire erosion mitigation treatments represented a better choice than doing nothing, especially in sites where erosion is high. However, the meta-analysis highlights under-representation of studies on this topic outside of the USA, Spain and Portugal. It was also observed that most of the studies were conducted at hillslope scale and tested mulching (namely straw, wood and hydromulch) and/or barriers, while larger scales and other treatments were scarcely addressed. Further efforts need to be made in testing, from field and modeling studies, combinations of existing and/or emerging erosion mitigation treatments to ensure that the most adequate measures are applied after fires.Elsevier2021-062021-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31263eng0012-825210.1016/j.earscirev.2021.103611Girona-García, AntonioVieira, Diana C. S.Silva, JoanaFernández, CristinaRobichaud, Peter R.Keizer, J. Jacobinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:23Zoai:ria.ua.pt:10773/31263Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:11.956997Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis
title Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis
spellingShingle Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis
Girona-García, Antonio
Wildfires
Runoff
Sediment losses
Erosion control
Mulch
title_short Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis
title_full Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis
title_fullStr Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis
title_full_unstemmed Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis
title_sort Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis
author Girona-García, Antonio
author_facet Girona-García, Antonio
Vieira, Diana C. S.
Silva, Joana
Fernández, Cristina
Robichaud, Peter R.
Keizer, J. Jacob
author_role author
author2 Vieira, Diana C. S.
Silva, Joana
Fernández, Cristina
Robichaud, Peter R.
Keizer, J. Jacob
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Girona-García, Antonio
Vieira, Diana C. S.
Silva, Joana
Fernández, Cristina
Robichaud, Peter R.
Keizer, J. Jacob
dc.subject.por.fl_str_mv Wildfires
Runoff
Sediment losses
Erosion control
Mulch
topic Wildfires
Runoff
Sediment losses
Erosion control
Mulch
description Wildfires are known to be one of the main causes of soil erosion and land degradation, and their impacts on ecosystems and society are expected to increase in the future due to changes in climate and land use. It is therefore vital to mitigate the increased hydrological and erosive response after wildfires to maintain the sustainability of ecosystems and protect the values at risk downstream from the fire-affected areas. Soil erosion mitigation treatments have been widely applied after wildfires but assessment of their effectiveness has been limited to local and regional-scale studies, whose conclusions may depend heavily on site-specific conditions. To overcome this limitation, a meta-analysis approach was applied to investigations of post-wildfire soil erosion mitigation treatments published in peer-reviewed journals. A meta-analysis database was compiled that consisted of 53 and 222 pairs of treated/untreated observations on post-fire runoff and erosion, respectively, extracted from 34 publications indexed in Scopus. The overall effectiveness of mitigation treatments, expressed as the quantitative metric ‘effect size’, was determined for both the runoff and erosion observations, and further analyzed for four different types of treatments (cover-based, barriers, seeding, and chemical treatments). The erosion observations involving cover-based treatments were analyzed for differences in effectiveness between 3 different types of mulch materials (straw, wood-based, and hydromulch) as well as between different application rates of straw and wood materials. Finally, the erosion observations were also analyzed for the overall effectiveness of post-fire year, burn severity, rainfall amount and erosivity, and ground cover. The meta-analysis results show that all four types of treatments significantly reduced post-fire soil erosion, but that only the cover and barrier treatments significantly reduced post-fire runoff. From the three different cover treatments, straw and wood mulches were significantly more effective in mitigating erosion than hydromulch. In addition, the effectiveness of both straw and wood mulches depended on their application rates. Straw mulching was less effective at rates below than above 200 g m−2, while mulching with wood materials at high rates (1300 to 1750 g m−2) produced more variable outcomes than lower rates. Results also suggest that the overall effectiveness of the treatments was greatest shortly after fire, in severely burned sites, providing or promoting the development of ground cover over 70%, and that it increased with increasing rainfall erosivity. It can be concluded that, in overall terms, the application of the studied post-fire erosion mitigation treatments represented a better choice than doing nothing, especially in sites where erosion is high. However, the meta-analysis highlights under-representation of studies on this topic outside of the USA, Spain and Portugal. It was also observed that most of the studies were conducted at hillslope scale and tested mulching (namely straw, wood and hydromulch) and/or barriers, while larger scales and other treatments were scarcely addressed. Further efforts need to be made in testing, from field and modeling studies, combinations of existing and/or emerging erosion mitigation treatments to ensure that the most adequate measures are applied after fires.
publishDate 2021
dc.date.none.fl_str_mv 2021-06
2021-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31263
url http://hdl.handle.net/10773/31263
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0012-8252
10.1016/j.earscirev.2021.103611
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137687040425984