Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening

Detalhes bibliográficos
Autor(a) principal: Santos, Carla S.
Data de Publicação: 2012
Outros Autores: Pinheiro, Miguel, Silva, Ana I., Egas, Conceição, Vasconcelos, Marta W.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/9977
Resumo: Background: Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results: Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions: Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
id RCAP_98895a43b36d760c44f2f3ea62706684
oai_identifier_str oai:repositorio.ucp.pt:10400.14/9977
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screeningBackground: Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results: Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions: Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.BiomedcentralVeritati - Repositório Institucional da Universidade Católica PortuguesaSantos, Carla S.Pinheiro, MiguelSilva, Ana I.Egas, ConceiçãoVasconcelos, Marta W.2013-01-28T12:18:10Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/9977engSANTOS, Carla S. ...[et al.] - Searching for resistance genes to Bursaphelenchus x. BMC Genomica. ISSN 1471-2164. Vol. 13 (2012), p. 1-151471-216410.1186/1471-2164-13-599WOS:000314647300001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:14:41Zoai:repositorio.ucp.pt:10400.14/9977Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:08:35.006236Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
title Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
spellingShingle Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
Santos, Carla S.
title_short Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
title_full Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
title_fullStr Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
title_full_unstemmed Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
title_sort Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
author Santos, Carla S.
author_facet Santos, Carla S.
Pinheiro, Miguel
Silva, Ana I.
Egas, Conceição
Vasconcelos, Marta W.
author_role author
author2 Pinheiro, Miguel
Silva, Ana I.
Egas, Conceição
Vasconcelos, Marta W.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Santos, Carla S.
Pinheiro, Miguel
Silva, Ana I.
Egas, Conceição
Vasconcelos, Marta W.
description Background: Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results: Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions: Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2013-01-28T12:18:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/9977
url http://hdl.handle.net/10400.14/9977
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SANTOS, Carla S. ...[et al.] - Searching for resistance genes to Bursaphelenchus x. BMC Genomica. ISSN 1471-2164. Vol. 13 (2012), p. 1-15
1471-2164
10.1186/1471-2164-13-599
WOS:000314647300001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Biomedcentral
publisher.none.fl_str_mv Biomedcentral
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131755251236864