"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , , , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/59133 |
Resumo: | [Excerpt] The present study reports the use of non-porous, ‘‘smart’’ and stimulus responsive chitosan-based scaffolds with the capability of gradual in situ pore formation for bone tissue engineering applications. Biomimetic calcium phosphate (CaP) coatings were used as a strategy to incorporate lysozyme at the surface of chitosan based materials the main objective of controlling their degradation profile as a function of immersion time. In order to confirm the concept, degradation tests with concentration similar to those incorporated into CaP chitosan-based scaffolds were used to study the degradation of the scaffolds and the formation of pores as function of immersion time. Degradation studies with lysozyme (1.5 g/L) showed the formation of pores, indicating an increase of porosity (~5% - 55% up to 21 days) resulting in porous 3-D structures with interconnected pores. […] |
id |
RCAP_9e430bd0776e58572468972431e27076 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/59133 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatingsScience & Technology[Excerpt] The present study reports the use of non-porous, ‘‘smart’’ and stimulus responsive chitosan-based scaffolds with the capability of gradual in situ pore formation for bone tissue engineering applications. Biomimetic calcium phosphate (CaP) coatings were used as a strategy to incorporate lysozyme at the surface of chitosan based materials the main objective of controlling their degradation profile as a function of immersion time. In order to confirm the concept, degradation tests with concentration similar to those incorporated into CaP chitosan-based scaffolds were used to study the degradation of the scaffolds and the formation of pores as function of immersion time. Degradation studies with lysozyme (1.5 g/L) showed the formation of pores, indicating an increase of porosity (~5% - 55% up to 21 days) resulting in porous 3-D structures with interconnected pores. […]info:eu-repo/semantics/publishedVersionMary Ann Liebert Inc.Universidade do MinhoMartins, A. M.Pham, Q. P.Malafaya, P. B.Raphael, R. M.Kasper, F. K.Reis, R. L.Mikos, A. G.20082008-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/59133eng1937-3341info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T07:16:17Zoai:repositorium.sdum.uminho.pt:1822/59133Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T07:16:17Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings |
title |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings |
spellingShingle |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings Martins, A. M. Science & Technology |
title_short |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings |
title_full |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings |
title_fullStr |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings |
title_full_unstemmed |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings |
title_sort |
"Smart'' and stimulus responsive chitosan-based scaffolds/cells for bone tissue engineering: Influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by cap coatings |
author |
Martins, A. M. |
author_facet |
Martins, A. M. Pham, Q. P. Malafaya, P. B. Raphael, R. M. Kasper, F. K. Reis, R. L. Mikos, A. G. |
author_role |
author |
author2 |
Pham, Q. P. Malafaya, P. B. Raphael, R. M. Kasper, F. K. Reis, R. L. Mikos, A. G. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Martins, A. M. Pham, Q. P. Malafaya, P. B. Raphael, R. M. Kasper, F. K. Reis, R. L. Mikos, A. G. |
dc.subject.por.fl_str_mv |
Science & Technology |
topic |
Science & Technology |
description |
[Excerpt] The present study reports the use of non-porous, ‘‘smart’’ and stimulus responsive chitosan-based scaffolds with the capability of gradual in situ pore formation for bone tissue engineering applications. Biomimetic calcium phosphate (CaP) coatings were used as a strategy to incorporate lysozyme at the surface of chitosan based materials the main objective of controlling their degradation profile as a function of immersion time. In order to confirm the concept, degradation tests with concentration similar to those incorporated into CaP chitosan-based scaffolds were used to study the degradation of the scaffolds and the formation of pores as function of immersion time. Degradation studies with lysozyme (1.5 g/L) showed the formation of pores, indicating an increase of porosity (~5% - 55% up to 21 days) resulting in porous 3-D structures with interconnected pores. […] |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/59133 |
url |
http://hdl.handle.net/1822/59133 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1937-3341 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Mary Ann Liebert Inc. |
publisher.none.fl_str_mv |
Mary Ann Liebert Inc. |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545259500961792 |