Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/51569 |
Resumo: | Although haplodiploidy is widespread in nature, the evolutionary consequences of this mode of reproduction are not well characterized. Here, we examine how genome-wide hemizygosity and a lack of recombination in haploid males affects genomic differentiation in populations that diverge via natural selection while experiencing gene flow. First, we simulated diploid and haplodiploid “genomes” (500-kb loci) evolving under an isolation-with-migration model with mutation, drift, selection, migration, and recombination; and examined differentiation at neutral sites both tightly and loosely linked to a divergently selected site. So long as there is divergent selection and migration, sex-limited hemizygosity and recombination cause elevated differentiation (i.e., produce a “faster-haplodiploid effect”) in haplodiploid populations relative to otherwise equivalent diploid populations, for both recessive and codominant mutations. Second, we used genome-wide SNP data to model divergence history and describe patterns of genomic differentiation between sympatric populations of Neodiprion lecontei and N. pinetum, a pair of pine sawfly species (order: Hymenoptera; family: Diprionidae) that are specialized on different pine hosts. These analyses support a history of continuous gene exchange throughout divergence and reveal a pattern of heterogeneous genomic differentiation that is consistent with divergent selection on many unlinked loci. Third, using simulations of haplodiploid and diploid populations evolving according to the estimated divergence history of N. lecontei and N. pinetum, we found that divergent selection would lead to higher differentiation in haplodiploids. Based on these results, we hypothesize that haplodiploids undergo divergence-with-gene-flow and sympatric speciation more readily than diploids. |
id |
RCAP_a7a6434a34290183b1b66e03a94b9503 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/51569 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopteransAlthough haplodiploidy is widespread in nature, the evolutionary consequences of this mode of reproduction are not well characterized. Here, we examine how genome-wide hemizygosity and a lack of recombination in haploid males affects genomic differentiation in populations that diverge via natural selection while experiencing gene flow. First, we simulated diploid and haplodiploid “genomes” (500-kb loci) evolving under an isolation-with-migration model with mutation, drift, selection, migration, and recombination; and examined differentiation at neutral sites both tightly and loosely linked to a divergently selected site. So long as there is divergent selection and migration, sex-limited hemizygosity and recombination cause elevated differentiation (i.e., produce a “faster-haplodiploid effect”) in haplodiploid populations relative to otherwise equivalent diploid populations, for both recessive and codominant mutations. Second, we used genome-wide SNP data to model divergence history and describe patterns of genomic differentiation between sympatric populations of Neodiprion lecontei and N. pinetum, a pair of pine sawfly species (order: Hymenoptera; family: Diprionidae) that are specialized on different pine hosts. These analyses support a history of continuous gene exchange throughout divergence and reveal a pattern of heterogeneous genomic differentiation that is consistent with divergent selection on many unlinked loci. Third, using simulations of haplodiploid and diploid populations evolving according to the estimated divergence history of N. lecontei and N. pinetum, we found that divergent selection would lead to higher differentiation in haplodiploids. Based on these results, we hypothesize that haplodiploids undergo divergence-with-gene-flow and sympatric speciation more readily than diploids.WileyRepositório da Universidade de LisboaBendall, Emily E.Bagley, Robin K.Sousa, Vitor CLinnen, Catherine R.2023-03-01T01:30:30Z2022-032022-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/51569engBendall, E.E., Bagley, R.K., Sousa, V.C. and Linnen, C.R. (2022), Faster-haplodiploid evolution under divergence-with-gene-flow: simulations and empirical data from pine-feeding hymenopterans. Mol Ecol. Accepted Author Manuscript. https://doi.org/10.1111/mec.1641010.1111/mec.16410info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:56:21Zoai:repositorio.ul.pt:10451/51569Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:02:50.834366Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans |
title |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans |
spellingShingle |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans Bendall, Emily E. |
title_short |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans |
title_full |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans |
title_fullStr |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans |
title_full_unstemmed |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans |
title_sort |
Faster‐haplodiploid evolution under divergence‐with‐gene‐flow: simulations and empirical data from pine‐feeding hymenopterans |
author |
Bendall, Emily E. |
author_facet |
Bendall, Emily E. Bagley, Robin K. Sousa, Vitor C Linnen, Catherine R. |
author_role |
author |
author2 |
Bagley, Robin K. Sousa, Vitor C Linnen, Catherine R. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Bendall, Emily E. Bagley, Robin K. Sousa, Vitor C Linnen, Catherine R. |
description |
Although haplodiploidy is widespread in nature, the evolutionary consequences of this mode of reproduction are not well characterized. Here, we examine how genome-wide hemizygosity and a lack of recombination in haploid males affects genomic differentiation in populations that diverge via natural selection while experiencing gene flow. First, we simulated diploid and haplodiploid “genomes” (500-kb loci) evolving under an isolation-with-migration model with mutation, drift, selection, migration, and recombination; and examined differentiation at neutral sites both tightly and loosely linked to a divergently selected site. So long as there is divergent selection and migration, sex-limited hemizygosity and recombination cause elevated differentiation (i.e., produce a “faster-haplodiploid effect”) in haplodiploid populations relative to otherwise equivalent diploid populations, for both recessive and codominant mutations. Second, we used genome-wide SNP data to model divergence history and describe patterns of genomic differentiation between sympatric populations of Neodiprion lecontei and N. pinetum, a pair of pine sawfly species (order: Hymenoptera; family: Diprionidae) that are specialized on different pine hosts. These analyses support a history of continuous gene exchange throughout divergence and reveal a pattern of heterogeneous genomic differentiation that is consistent with divergent selection on many unlinked loci. Third, using simulations of haplodiploid and diploid populations evolving according to the estimated divergence history of N. lecontei and N. pinetum, we found that divergent selection would lead to higher differentiation in haplodiploids. Based on these results, we hypothesize that haplodiploids undergo divergence-with-gene-flow and sympatric speciation more readily than diploids. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 2022-03-01T00:00:00Z 2023-03-01T01:30:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/51569 |
url |
http://hdl.handle.net/10451/51569 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bendall, E.E., Bagley, R.K., Sousa, V.C. and Linnen, C.R. (2022), Faster-haplodiploid evolution under divergence-with-gene-flow: simulations and empirical data from pine-feeding hymenopterans. Mol Ecol. Accepted Author Manuscript. https://doi.org/10.1111/mec.16410 10.1111/mec.16410 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134578135269376 |