A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/144834 |
Resumo: | Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. |
id |
RCAP_b24efd5cdcea313e08bb8d09f86f3837 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/144834 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver TransplantationSDG 3 - Good Health and Well-beingCopyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.OBJECTIVE: To propose a new decision algorithm combining biomarkers measured in a tumor biopsy with clinical variables, to predict recurrence after liver transplantation (LT). SUMMARY BACKGROUND DATA: Liver cancer is one of the most frequent causes of cancer-related mortality. LT is the best treatment for hepatocellular carcinoma (HCC) patients but the scarcity of organs makes patient selection a critical step. Additionally, clinical criteria widely applied in patient eligibility decisions miss potentially curable patients while selecting patients that relapse after transplantation. METHODS: A literature systematic review singled out candidate biomarkers whose RNA levels were assessed by quantitative PCR in tumor tissue from 138 HCC patients submitted to LT (>5 y follow up, 32% beyond Milan criteria). The resulting four gene signature was combined with clinical variables to develop a decision algorithm using machine learning approaches. The method was named HepatoPredict. RESULTS: HepatoPredict identifies 99% disease-free patients (>5 y) from a retrospective cohort, including many outside clinical criteria (16%-24%), thus reducing the false negative rate. This increased sensitivity is accompanied by an increased positive predictive value (88,5%-94,4%) without any loss of long-term overall survival or recurrence rates for patients deemed eligible by HepatoPredict; those deemed ineligible display marked reduction of survival and increased recurrence in the short and long term. CONCLUSIONS: HepatoPredict outperforms conventional clinical-pathologic selection criteria, (Milan, UCSF) providing superior prognostic information. Accurately identifying which patients most likely benefit from LT enables an objective stratification of waiting lists and information-based allocation of optimal versus suboptimal organs.Centro de Estudos de Doenças Crónicas (CEDOC)NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNPinto-Marques, HugoCardoso, JoanaSilva, SílviaNeto, João LGonçalves-Reis, MariaProença, DanielaMesquita, MartaManso, AndréCarapeta, SaraSobral, MafaldaFigueiredo, AntonioRodrigues, ClaraMilheiro, AdelaideCarvalho, AnaPerdigoto, RuiBarroso, EduardoPereira-Leal, José B2022-10-18T22:12:06Z2022-11-012022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/144834engPURE: 46256659https://doi.org/10.1097/SLA.0000000000005637info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:24:47Zoai:run.unl.pt:10362/144834Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:46.478063Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
spellingShingle |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation Pinto-Marques, Hugo SDG 3 - Good Health and Well-being |
title_short |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_full |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_fullStr |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_full_unstemmed |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_sort |
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
author |
Pinto-Marques, Hugo |
author_facet |
Pinto-Marques, Hugo Cardoso, Joana Silva, Sílvia Neto, João L Gonçalves-Reis, Maria Proença, Daniela Mesquita, Marta Manso, André Carapeta, Sara Sobral, Mafalda Figueiredo, Antonio Rodrigues, Clara Milheiro, Adelaide Carvalho, Ana Perdigoto, Rui Barroso, Eduardo Pereira-Leal, José B |
author_role |
author |
author2 |
Cardoso, Joana Silva, Sílvia Neto, João L Gonçalves-Reis, Maria Proença, Daniela Mesquita, Marta Manso, André Carapeta, Sara Sobral, Mafalda Figueiredo, Antonio Rodrigues, Clara Milheiro, Adelaide Carvalho, Ana Perdigoto, Rui Barroso, Eduardo Pereira-Leal, José B |
author2_role |
author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Centro de Estudos de Doenças Crónicas (CEDOC) NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) RUN |
dc.contributor.author.fl_str_mv |
Pinto-Marques, Hugo Cardoso, Joana Silva, Sílvia Neto, João L Gonçalves-Reis, Maria Proença, Daniela Mesquita, Marta Manso, André Carapeta, Sara Sobral, Mafalda Figueiredo, Antonio Rodrigues, Clara Milheiro, Adelaide Carvalho, Ana Perdigoto, Rui Barroso, Eduardo Pereira-Leal, José B |
dc.subject.por.fl_str_mv |
SDG 3 - Good Health and Well-being |
topic |
SDG 3 - Good Health and Well-being |
description |
Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-18T22:12:06Z 2022-11-01 2022-11-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/144834 |
url |
http://hdl.handle.net/10362/144834 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 46256659 https://doi.org/10.1097/SLA.0000000000005637 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138110355800064 |