On a generalized Laguerre operational matrix of fractional integration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/3744 |
Resumo: | A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval. |
id |
RCAP_b72423cdb677687ff2ba7ce472c1e8d3 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/3744 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On a generalized Laguerre operational matrix of fractional integrationA new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.Hindawi Publishing CorporationRepositório Científico do Instituto Politécnico do PortoBhrawy, A. H.Baleanu, DumitruAssas, L. M.Machado, J.A.Tenreiro2014-02-06T15:03:30Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/3744eng1024-123X10.1155/2013/569286info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:43:35Zoai:recipp.ipp.pt:10400.22/3744Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:24:44.298426Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On a generalized Laguerre operational matrix of fractional integration |
title |
On a generalized Laguerre operational matrix of fractional integration |
spellingShingle |
On a generalized Laguerre operational matrix of fractional integration Bhrawy, A. H. |
title_short |
On a generalized Laguerre operational matrix of fractional integration |
title_full |
On a generalized Laguerre operational matrix of fractional integration |
title_fullStr |
On a generalized Laguerre operational matrix of fractional integration |
title_full_unstemmed |
On a generalized Laguerre operational matrix of fractional integration |
title_sort |
On a generalized Laguerre operational matrix of fractional integration |
author |
Bhrawy, A. H. |
author_facet |
Bhrawy, A. H. Baleanu, Dumitru Assas, L. M. Machado, J.A.Tenreiro |
author_role |
author |
author2 |
Baleanu, Dumitru Assas, L. M. Machado, J.A.Tenreiro |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Bhrawy, A. H. Baleanu, Dumitru Assas, L. M. Machado, J.A.Tenreiro |
description |
A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z 2014-02-06T15:03:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/3744 |
url |
http://hdl.handle.net/10400.22/3744 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1024-123X 10.1155/2013/569286 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131339864145920 |