On a generalized Laguerre operational matrix of fractional integration

Detalhes bibliográficos
Autor(a) principal: Bhrawy, A. H.
Data de Publicação: 2013
Outros Autores: Baleanu, Dumitru, Assas, L. M., Machado, J.A.Tenreiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/3744
Resumo: A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
id RCAP_b72423cdb677687ff2ba7ce472c1e8d3
oai_identifier_str oai:recipp.ipp.pt:10400.22/3744
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On a generalized Laguerre operational matrix of fractional integrationA new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.Hindawi Publishing CorporationRepositório Científico do Instituto Politécnico do PortoBhrawy, A. H.Baleanu, DumitruAssas, L. M.Machado, J.A.Tenreiro2014-02-06T15:03:30Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/3744eng1024-123X10.1155/2013/569286info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:43:35Zoai:recipp.ipp.pt:10400.22/3744Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:24:44.298426Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On a generalized Laguerre operational matrix of fractional integration
title On a generalized Laguerre operational matrix of fractional integration
spellingShingle On a generalized Laguerre operational matrix of fractional integration
Bhrawy, A. H.
title_short On a generalized Laguerre operational matrix of fractional integration
title_full On a generalized Laguerre operational matrix of fractional integration
title_fullStr On a generalized Laguerre operational matrix of fractional integration
title_full_unstemmed On a generalized Laguerre operational matrix of fractional integration
title_sort On a generalized Laguerre operational matrix of fractional integration
author Bhrawy, A. H.
author_facet Bhrawy, A. H.
Baleanu, Dumitru
Assas, L. M.
Machado, J.A.Tenreiro
author_role author
author2 Baleanu, Dumitru
Assas, L. M.
Machado, J.A.Tenreiro
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Bhrawy, A. H.
Baleanu, Dumitru
Assas, L. M.
Machado, J.A.Tenreiro
description A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
2014-02-06T15:03:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/3744
url http://hdl.handle.net/10400.22/3744
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1024-123X
10.1155/2013/569286
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131339864145920