Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Emanuel
Data de Publicação: 2012
Outros Autores: Pereira, Rui, Rocha, I., Rocha, Miguel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/23370
Resumo: Metabolic engineering (ME) efforts have been recently boosted by the increase in the number of annotated genomes and by the development of several genome-scale metabolic models for microbes of interest in industrial biotechnology. Based on these efforts, strain optimization methods have been proposed to reach the best set of genetic changes to apply to selected host microbes, in order to create strains that are able to overproduce metabolites of industrial interest. Previous work in strain optimization has been mostly based in finding sets of gene (or reaction) deletions that lead to desired phenotypes in computational simulations. In this work, we focus on enlarging the set of possible genetic changes, considering gene over and underexpression. A gene is considered under (over) expressed if its expression value is constrained to be significantly lower (higher) than the one in the wild-type strain, used as a reference. A method is proposed to propagate relative gene expression values to flux constraints over related reactions, making use of the available transcriptional/ translational information. The algorithms chosen for the optimization tasks are metaheuristics such as eolutionary agorithm (EA) and smulated anealing (SA), based on previous successful work on gene knockout optimization. These methods were modified appropriately to accommodate the novel optimization tasks and were applied to study the optimization of succinic and lactic acid production using Escherichia coli as the host. The results are compared with previous ones obtained in gene knockout optimization, thus showing the usefulness of the approach. The methods proposed in this work were implemented in a novel plug-in for OptFlux, an open-source software framework for ME. Supplementary Material is available at www.liebertonline.com/cmb.
id RCAP_b7c1dcb55455c07c5d6ce4ec6c69b8d8
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/23370
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimization approaches for the in silico discovery of optimal targets for gene over/underexpressionAlgorithmsBiochemical networksGene expressionScience & TechnologyMetabolic engineering (ME) efforts have been recently boosted by the increase in the number of annotated genomes and by the development of several genome-scale metabolic models for microbes of interest in industrial biotechnology. Based on these efforts, strain optimization methods have been proposed to reach the best set of genetic changes to apply to selected host microbes, in order to create strains that are able to overproduce metabolites of industrial interest. Previous work in strain optimization has been mostly based in finding sets of gene (or reaction) deletions that lead to desired phenotypes in computational simulations. In this work, we focus on enlarging the set of possible genetic changes, considering gene over and underexpression. A gene is considered under (over) expressed if its expression value is constrained to be significantly lower (higher) than the one in the wild-type strain, used as a reference. A method is proposed to propagate relative gene expression values to flux constraints over related reactions, making use of the available transcriptional/ translational information. The algorithms chosen for the optimization tasks are metaheuristics such as eolutionary agorithm (EA) and smulated anealing (SA), based on previous successful work on gene knockout optimization. These methods were modified appropriately to accommodate the novel optimization tasks and were applied to study the optimization of succinic and lactic acid production using Escherichia coli as the host. The results are compared with previous ones obtained in gene knockout optimization, thus showing the usefulness of the approach. The methods proposed in this work were implemented in a novel plug-in for OptFlux, an open-source software framework for ME. Supplementary Material is available at www.liebertonline.com/cmb.Mary Ann LiebertMary Ann Liebert Inc.Universidade do MinhoGonçalves, EmanuelPereira, RuiRocha, I.Rocha, Miguel20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/23370eng1066-527710.1089/cmb.2011.026522300313info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:40:31Zoai:repositorium.sdum.uminho.pt:1822/23370Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:37:20.004721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
title Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
spellingShingle Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
Gonçalves, Emanuel
Algorithms
Biochemical networks
Gene expression
Science & Technology
title_short Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
title_full Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
title_fullStr Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
title_full_unstemmed Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
title_sort Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
author Gonçalves, Emanuel
author_facet Gonçalves, Emanuel
Pereira, Rui
Rocha, I.
Rocha, Miguel
author_role author
author2 Pereira, Rui
Rocha, I.
Rocha, Miguel
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Emanuel
Pereira, Rui
Rocha, I.
Rocha, Miguel
dc.subject.por.fl_str_mv Algorithms
Biochemical networks
Gene expression
Science & Technology
topic Algorithms
Biochemical networks
Gene expression
Science & Technology
description Metabolic engineering (ME) efforts have been recently boosted by the increase in the number of annotated genomes and by the development of several genome-scale metabolic models for microbes of interest in industrial biotechnology. Based on these efforts, strain optimization methods have been proposed to reach the best set of genetic changes to apply to selected host microbes, in order to create strains that are able to overproduce metabolites of industrial interest. Previous work in strain optimization has been mostly based in finding sets of gene (or reaction) deletions that lead to desired phenotypes in computational simulations. In this work, we focus on enlarging the set of possible genetic changes, considering gene over and underexpression. A gene is considered under (over) expressed if its expression value is constrained to be significantly lower (higher) than the one in the wild-type strain, used as a reference. A method is proposed to propagate relative gene expression values to flux constraints over related reactions, making use of the available transcriptional/ translational information. The algorithms chosen for the optimization tasks are metaheuristics such as eolutionary agorithm (EA) and smulated anealing (SA), based on previous successful work on gene knockout optimization. These methods were modified appropriately to accommodate the novel optimization tasks and were applied to study the optimization of succinic and lactic acid production using Escherichia coli as the host. The results are compared with previous ones obtained in gene knockout optimization, thus showing the usefulness of the approach. The methods proposed in this work were implemented in a novel plug-in for OptFlux, an open-source software framework for ME. Supplementary Material is available at www.liebertonline.com/cmb.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/23370
url http://hdl.handle.net/1822/23370
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1066-5277
10.1089/cmb.2011.0265
22300313
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Mary Ann Liebert
Mary Ann Liebert Inc.
publisher.none.fl_str_mv Mary Ann Liebert
Mary Ann Liebert Inc.
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132907127701504