Semi-supervised active learning anomaly detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/24745 |
Resumo: | Mestrado Bolonha em Data Analytics for Business |
id |
RCAP_b9558a20ab9bd1e16829ad6cc8dc4888 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/24745 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Semi-supervised active learning anomaly detectionTime Series Anomaly DetectionFeature Extraction & SelectionSemi Supervised Active LearningQuery Strategy InformativenessMestrado Bolonha em Data Analytics for BusinessThe analysis of Time Series data is a growing field of study due to the increase in the rate of data collection from the most varied sensors that lead to an overload of information to be analysed in order to obtain the most accurate conclusions possible. Hence, due to the high volume of data without labels, automatized detection and labelling of anomalies in Time Series data is an active area of research, as it becomes impossible to manually identify abnormal behavior in Time Series because of the high time and monetary costs. This research focus on the investigation of the power of a Semi Supervised Active Learning algorithm to identify outlier-type anomalies in univariate Time Series. To maximize the performance of the algorithm, we start by proposing an initial pool of features from which the ones with best classification power are selected to develop the algorithm. Regarding the Semi Supervised Learning segment of the process a comparison between several classifiers is made. In addition, various Query Strategies are proposed in the Active Learning segment to increase the informativeness of the observations chosen to be manually labelled so that the time spent labelling anomalies could be decreased without a great impact in the performance of the model. In a first instance, we demonstrate that the pool of designed features better identifies the anomalies than features selected in a fully automatized process. Furthermore, we demonstrate that a Query Strategy used to select the most informative observations to be expertly classified based on the utility and uncertainty of the observations exhibit better results than randomly selecting the observations to be tagged, improving the performance of the model without infeasible time and cost spent in the identification of the anomalous behavior.Instituto Superior de Economia e GestãoBastos, João FerreiraClemente, FabianaRepositório da Universidade de LisboaSantos, Henrique Serafim2022-07-04T09:02:57Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.5/24745engSantos, Henrique Serafim (2022). “Semi-supervised active learning anomaly detection”. Dissertação de Mestrado. Universidade de Lisboa. Instituto Superior de Economia e Gestãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:54:22Zoai:www.repository.utl.pt:10400.5/24745Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:08:43.314258Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Semi-supervised active learning anomaly detection |
title |
Semi-supervised active learning anomaly detection |
spellingShingle |
Semi-supervised active learning anomaly detection Santos, Henrique Serafim Time Series Anomaly Detection Feature Extraction & Selection Semi Supervised Active Learning Query Strategy Informativeness |
title_short |
Semi-supervised active learning anomaly detection |
title_full |
Semi-supervised active learning anomaly detection |
title_fullStr |
Semi-supervised active learning anomaly detection |
title_full_unstemmed |
Semi-supervised active learning anomaly detection |
title_sort |
Semi-supervised active learning anomaly detection |
author |
Santos, Henrique Serafim |
author_facet |
Santos, Henrique Serafim |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bastos, João Ferreira Clemente, Fabiana Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Santos, Henrique Serafim |
dc.subject.por.fl_str_mv |
Time Series Anomaly Detection Feature Extraction & Selection Semi Supervised Active Learning Query Strategy Informativeness |
topic |
Time Series Anomaly Detection Feature Extraction & Selection Semi Supervised Active Learning Query Strategy Informativeness |
description |
Mestrado Bolonha em Data Analytics for Business |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-04T09:02:57Z 2022-02 2022-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/24745 |
url |
http://hdl.handle.net/10400.5/24745 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Santos, Henrique Serafim (2022). “Semi-supervised active learning anomaly detection”. Dissertação de Mestrado. Universidade de Lisboa. Instituto Superior de Economia e Gestão |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Superior de Economia e Gestão |
publisher.none.fl_str_mv |
Instituto Superior de Economia e Gestão |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131181438992384 |