(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/142636 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_b9e21e04c7616cb0070f801a72467552 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/142636 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreakUnemploymentEmploymentCOVID-19TechnologyDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsThis paper aims to investigate and understand the drivers of unemployment rates in OECD Nations during the COVID-19 Outbreak and the associated measures and events. Previous research on unemployment models was consulted in order to consolidate a diverse list of possible explanatory variables for modelling unemployment rates. We further assess whether technology or healthcare availability impact said figures, particularly with lockdown measures imposed and a large amount of operations having shifted online. The model identified to best describe unemployment rates was the auto-regressive 2-factor model whilst a multiple linear regression was used to attain more interpretable insights. The proportion of a population in self employment as well as the availability of hospital beds appear to be the most influential factors as opposed to other more conventional factors during this pandemic environment.Pinheiro, Flávio Luís PortasRUNDemetriades, Manuel2022-07-29T10:56:21Z2022-05-092022-05-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/142636TID:203045262enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:04:06Zoai:run.unl.pt:10362/142636Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:04:06Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak |
title |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak |
spellingShingle |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak Demetriades, Manuel Unemployment Employment COVID-19 Technology |
title_short |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak |
title_full |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak |
title_fullStr |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak |
title_full_unstemmed |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak |
title_sort |
(Un)employment in unprecedented times: Understanding unemployment during the COVID-19 outbreak |
author |
Demetriades, Manuel |
author_facet |
Demetriades, Manuel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinheiro, Flávio Luís Portas RUN |
dc.contributor.author.fl_str_mv |
Demetriades, Manuel |
dc.subject.por.fl_str_mv |
Unemployment Employment COVID-19 Technology |
topic |
Unemployment Employment COVID-19 Technology |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-29T10:56:21Z 2022-05-09 2022-05-09T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/142636 TID:203045262 |
url |
http://hdl.handle.net/10362/142636 |
identifier_str_mv |
TID:203045262 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545879492493312 |