Spectra of weighted rooted graphs having prescribed subgraphs at some levels
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/4231 |
Resumo: | Let B be a weighted generalized Bethe tree of k levels (k > 1) in which nj is the number of vertices at the level k-j+1 (1 ≤ j ≤ k). Let Δ \subset {1, 2,., k-1} and F={Gj:j \in Δ}, where Gj is a prescribed weighted graph on each set of children of B at the level k-j+1. In this paper, the eigenvalues of a block symmetric tridiagonal matrix of order n1+n2 +...+nk are characterized as the eigenvalues of symmetric tridiagonal matrices of order j, 1≤j≤k, easily constructed from the degrees of the vertices, the weights of the edges, and the eigenvalues of the matrices associated to the family of graphs F. These results are applied to characterize the eigenvalues of the Laplacian matrix, including their multiplicities, of the graph β(F) obtained from β and all the graphs in F={Gj:j \in Δ}; and also of the signless Laplacian and adjacency matrices whenever the graphs of the family F are regular. |
id |
RCAP_c02894e8773c3eabee1634e8c0a16942 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/4231 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spectra of weighted rooted graphs having prescribed subgraphs at some levelsAdjacency matrixGeneralized bethe treeLaplacian matrixSignless laplacian matrixWeighted graphLet B be a weighted generalized Bethe tree of k levels (k > 1) in which nj is the number of vertices at the level k-j+1 (1 ≤ j ≤ k). Let Δ \subset {1, 2,., k-1} and F={Gj:j \in Δ}, where Gj is a prescribed weighted graph on each set of children of B at the level k-j+1. In this paper, the eigenvalues of a block symmetric tridiagonal matrix of order n1+n2 +...+nk are characterized as the eigenvalues of symmetric tridiagonal matrices of order j, 1≤j≤k, easily constructed from the degrees of the vertices, the weights of the edges, and the eigenvalues of the matrices associated to the family of graphs F. These results are applied to characterize the eigenvalues of the Laplacian matrix, including their multiplicities, of the graph β(F) obtained from β and all the graphs in F={Gj:j \in Δ}; and also of the signless Laplacian and adjacency matrices whenever the graphs of the family F are regular.ILAS - International Linear Algebra Society20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/4231eng1081-3810Rojo, O.Robbiano, M.Cardoso, D. M.Martins, E. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T03:33:27Zoai:ria.ua.pt:10773/4231Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T03:33:27Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spectra of weighted rooted graphs having prescribed subgraphs at some levels |
title |
Spectra of weighted rooted graphs having prescribed subgraphs at some levels |
spellingShingle |
Spectra of weighted rooted graphs having prescribed subgraphs at some levels Rojo, O. Adjacency matrix Generalized bethe tree Laplacian matrix Signless laplacian matrix Weighted graph |
title_short |
Spectra of weighted rooted graphs having prescribed subgraphs at some levels |
title_full |
Spectra of weighted rooted graphs having prescribed subgraphs at some levels |
title_fullStr |
Spectra of weighted rooted graphs having prescribed subgraphs at some levels |
title_full_unstemmed |
Spectra of weighted rooted graphs having prescribed subgraphs at some levels |
title_sort |
Spectra of weighted rooted graphs having prescribed subgraphs at some levels |
author |
Rojo, O. |
author_facet |
Rojo, O. Robbiano, M. Cardoso, D. M. Martins, E. A. |
author_role |
author |
author2 |
Robbiano, M. Cardoso, D. M. Martins, E. A. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rojo, O. Robbiano, M. Cardoso, D. M. Martins, E. A. |
dc.subject.por.fl_str_mv |
Adjacency matrix Generalized bethe tree Laplacian matrix Signless laplacian matrix Weighted graph |
topic |
Adjacency matrix Generalized bethe tree Laplacian matrix Signless laplacian matrix Weighted graph |
description |
Let B be a weighted generalized Bethe tree of k levels (k > 1) in which nj is the number of vertices at the level k-j+1 (1 ≤ j ≤ k). Let Δ \subset {1, 2,., k-1} and F={Gj:j \in Δ}, where Gj is a prescribed weighted graph on each set of children of B at the level k-j+1. In this paper, the eigenvalues of a block symmetric tridiagonal matrix of order n1+n2 +...+nk are characterized as the eigenvalues of symmetric tridiagonal matrices of order j, 1≤j≤k, easily constructed from the degrees of the vertices, the weights of the edges, and the eigenvalues of the matrices associated to the family of graphs F. These results are applied to characterize the eigenvalues of the Laplacian matrix, including their multiplicities, of the graph β(F) obtained from β and all the graphs in F={Gj:j \in Δ}; and also of the signless Laplacian and adjacency matrices whenever the graphs of the family F are regular. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/4231 |
url |
http://hdl.handle.net/10773/4231 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1081-3810 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ILAS - International Linear Algebra Society |
publisher.none.fl_str_mv |
ILAS - International Linear Algebra Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543406470037504 |