Spectra of weighted rooted graphs having prescribed subgraphs at some levels

Detalhes bibliográficos
Autor(a) principal: Rojo, O.
Data de Publicação: 2011
Outros Autores: Robbiano, M., Cardoso, D. M., Martins, E. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/4231
Resumo: Let B be a weighted generalized Bethe tree of k levels (k > 1) in which nj is the number of vertices at the level k-j+1 (1 ≤ j ≤ k). Let Δ \subset {1, 2,., k-1} and F={Gj:j \in Δ}, where Gj is a prescribed weighted graph on each set of children of B at the level k-j+1. In this paper, the eigenvalues of a block symmetric tridiagonal matrix of order n1+n2 +...+nk are characterized as the eigenvalues of symmetric tridiagonal matrices of order j, 1≤j≤k, easily constructed from the degrees of the vertices, the weights of the edges, and the eigenvalues of the matrices associated to the family of graphs F. These results are applied to characterize the eigenvalues of the Laplacian matrix, including their multiplicities, of the graph β(F) obtained from β and all the graphs in F={Gj:j \in Δ}; and also of the signless Laplacian and adjacency matrices whenever the graphs of the family F are regular.
id RCAP_c02894e8773c3eabee1634e8c0a16942
oai_identifier_str oai:ria.ua.pt:10773/4231
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spectra of weighted rooted graphs having prescribed subgraphs at some levelsAdjacency matrixGeneralized bethe treeLaplacian matrixSignless laplacian matrixWeighted graphLet B be a weighted generalized Bethe tree of k levels (k > 1) in which nj is the number of vertices at the level k-j+1 (1 ≤ j ≤ k). Let Δ \subset {1, 2,., k-1} and F={Gj:j \in Δ}, where Gj is a prescribed weighted graph on each set of children of B at the level k-j+1. In this paper, the eigenvalues of a block symmetric tridiagonal matrix of order n1+n2 +...+nk are characterized as the eigenvalues of symmetric tridiagonal matrices of order j, 1≤j≤k, easily constructed from the degrees of the vertices, the weights of the edges, and the eigenvalues of the matrices associated to the family of graphs F. These results are applied to characterize the eigenvalues of the Laplacian matrix, including their multiplicities, of the graph β(F) obtained from β and all the graphs in F={Gj:j \in Δ}; and also of the signless Laplacian and adjacency matrices whenever the graphs of the family F are regular.ILAS - International Linear Algebra Society20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/4231eng1081-3810Rojo, O.Robbiano, M.Cardoso, D. M.Martins, E. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T03:33:27Zoai:ria.ua.pt:10773/4231Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T03:33:27Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spectra of weighted rooted graphs having prescribed subgraphs at some levels
title Spectra of weighted rooted graphs having prescribed subgraphs at some levels
spellingShingle Spectra of weighted rooted graphs having prescribed subgraphs at some levels
Rojo, O.
Adjacency matrix
Generalized bethe tree
Laplacian matrix
Signless laplacian matrix
Weighted graph
title_short Spectra of weighted rooted graphs having prescribed subgraphs at some levels
title_full Spectra of weighted rooted graphs having prescribed subgraphs at some levels
title_fullStr Spectra of weighted rooted graphs having prescribed subgraphs at some levels
title_full_unstemmed Spectra of weighted rooted graphs having prescribed subgraphs at some levels
title_sort Spectra of weighted rooted graphs having prescribed subgraphs at some levels
author Rojo, O.
author_facet Rojo, O.
Robbiano, M.
Cardoso, D. M.
Martins, E. A.
author_role author
author2 Robbiano, M.
Cardoso, D. M.
Martins, E. A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Rojo, O.
Robbiano, M.
Cardoso, D. M.
Martins, E. A.
dc.subject.por.fl_str_mv Adjacency matrix
Generalized bethe tree
Laplacian matrix
Signless laplacian matrix
Weighted graph
topic Adjacency matrix
Generalized bethe tree
Laplacian matrix
Signless laplacian matrix
Weighted graph
description Let B be a weighted generalized Bethe tree of k levels (k > 1) in which nj is the number of vertices at the level k-j+1 (1 ≤ j ≤ k). Let Δ \subset {1, 2,., k-1} and F={Gj:j \in Δ}, where Gj is a prescribed weighted graph on each set of children of B at the level k-j+1. In this paper, the eigenvalues of a block symmetric tridiagonal matrix of order n1+n2 +...+nk are characterized as the eigenvalues of symmetric tridiagonal matrices of order j, 1≤j≤k, easily constructed from the degrees of the vertices, the weights of the edges, and the eigenvalues of the matrices associated to the family of graphs F. These results are applied to characterize the eigenvalues of the Laplacian matrix, including their multiplicities, of the graph β(F) obtained from β and all the graphs in F={Gj:j \in Δ}; and also of the signless Laplacian and adjacency matrices whenever the graphs of the family F are regular.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/4231
url http://hdl.handle.net/10773/4231
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1081-3810
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ILAS - International Linear Algebra Society
publisher.none.fl_str_mv ILAS - International Linear Algebra Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543406470037504