A hyperbolic conservation law and Particle Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/16877 |
Resumo: | In these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity - the density of particles $\rho(t,\cdot)$. This equation is a hyperbolic conservation law of type $\partial_{t}\rho(t,u)+\nabla F(\rho(t,u))=0$, where the flux $F$ is a concave function. Taking these systems evolving on the Euler time scale $tN$, a Central Limit Theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system on a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than $tN^{4/3}$ there is still no temporal evolution. As a consequence the current across a characteristic vanishes up to this longer time scale. |
id |
RCAP_c4a3fc22d597cd0bd312a016111b4ff3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/16877 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A hyperbolic conservation law and Particle SystemsHyperbolic conservation lawAsymmetric zero-range and exclusionhydrodynamic limitasymmetric simple exclusionasymmetric zero-rangeequilibrium fluctuationsScience & TechnologyIn these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity - the density of particles $\rho(t,\cdot)$. This equation is a hyperbolic conservation law of type $\partial_{t}\rho(t,u)+\nabla F(\rho(t,u))=0$, where the flux $F$ is a concave function. Taking these systems evolving on the Euler time scale $tN$, a Central Limit Theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system on a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than $tN^{4/3}$ there is still no temporal evolution. As a consequence the current across a characteristic vanishes up to this longer time scale.Fundação para a Ciência e a Tecnologia (FCT)Fundação Calouste GulbenkianTaylor & FrancisUniversidade do MinhoGonçalves, Patrícia20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/16877eng1023-6198 (Print)10.1080/10236190903382657http://dx.doi.org/10.1080/10236190903382657info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:22:35Zoai:repositorium.sdum.uminho.pt:1822/16877Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:16:05.851213Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A hyperbolic conservation law and Particle Systems |
title |
A hyperbolic conservation law and Particle Systems |
spellingShingle |
A hyperbolic conservation law and Particle Systems Gonçalves, Patrícia Hyperbolic conservation law Asymmetric zero-range and exclusion hydrodynamic limit asymmetric simple exclusion asymmetric zero-range equilibrium fluctuations Science & Technology |
title_short |
A hyperbolic conservation law and Particle Systems |
title_full |
A hyperbolic conservation law and Particle Systems |
title_fullStr |
A hyperbolic conservation law and Particle Systems |
title_full_unstemmed |
A hyperbolic conservation law and Particle Systems |
title_sort |
A hyperbolic conservation law and Particle Systems |
author |
Gonçalves, Patrícia |
author_facet |
Gonçalves, Patrícia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gonçalves, Patrícia |
dc.subject.por.fl_str_mv |
Hyperbolic conservation law Asymmetric zero-range and exclusion hydrodynamic limit asymmetric simple exclusion asymmetric zero-range equilibrium fluctuations Science & Technology |
topic |
Hyperbolic conservation law Asymmetric zero-range and exclusion hydrodynamic limit asymmetric simple exclusion asymmetric zero-range equilibrium fluctuations Science & Technology |
description |
In these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity - the density of particles $\rho(t,\cdot)$. This equation is a hyperbolic conservation law of type $\partial_{t}\rho(t,u)+\nabla F(\rho(t,u))=0$, where the flux $F$ is a concave function. Taking these systems evolving on the Euler time scale $tN$, a Central Limit Theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system on a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than $tN^{4/3}$ there is still no temporal evolution. As a consequence the current across a characteristic vanishes up to this longer time scale. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/16877 |
url |
http://hdl.handle.net/1822/16877 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1023-6198 (Print) 10.1080/10236190903382657 http://dx.doi.org/10.1080/10236190903382657 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132608793149440 |