A hyperbolic conservation law and Particle Systems

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Patrícia
Data de Publicação: 2011
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/16877
Resumo: In these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity - the density of particles $\rho(t,\cdot)$. This equation is a hyperbolic conservation law of type $\partial_{t}\rho(t,u)+\nabla F(\rho(t,u))=0$, where the flux $F$ is a concave function. Taking these systems evolving on the Euler time scale $tN$, a Central Limit Theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system on a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than $tN^{4/3}$ there is still no temporal evolution. As a consequence the current across a characteristic vanishes up to this longer time scale.
id RCAP_c4a3fc22d597cd0bd312a016111b4ff3
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/16877
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A hyperbolic conservation law and Particle SystemsHyperbolic conservation lawAsymmetric zero-range and exclusionhydrodynamic limitasymmetric simple exclusionasymmetric zero-rangeequilibrium fluctuationsScience & TechnologyIn these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity - the density of particles $\rho(t,\cdot)$. This equation is a hyperbolic conservation law of type $\partial_{t}\rho(t,u)+\nabla F(\rho(t,u))=0$, where the flux $F$ is a concave function. Taking these systems evolving on the Euler time scale $tN$, a Central Limit Theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system on a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than $tN^{4/3}$ there is still no temporal evolution. As a consequence the current across a characteristic vanishes up to this longer time scale.Fundação para a Ciência e a Tecnologia (FCT)Fundação Calouste GulbenkianTaylor & FrancisUniversidade do MinhoGonçalves, Patrícia20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/16877eng1023-6198 (Print)10.1080/10236190903382657http://dx.doi.org/10.1080/10236190903382657info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:22:35Zoai:repositorium.sdum.uminho.pt:1822/16877Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:16:05.851213Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A hyperbolic conservation law and Particle Systems
title A hyperbolic conservation law and Particle Systems
spellingShingle A hyperbolic conservation law and Particle Systems
Gonçalves, Patrícia
Hyperbolic conservation law
Asymmetric zero-range and exclusion
hydrodynamic limit
asymmetric simple exclusion
asymmetric zero-range
equilibrium fluctuations
Science & Technology
title_short A hyperbolic conservation law and Particle Systems
title_full A hyperbolic conservation law and Particle Systems
title_fullStr A hyperbolic conservation law and Particle Systems
title_full_unstemmed A hyperbolic conservation law and Particle Systems
title_sort A hyperbolic conservation law and Particle Systems
author Gonçalves, Patrícia
author_facet Gonçalves, Patrícia
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Patrícia
dc.subject.por.fl_str_mv Hyperbolic conservation law
Asymmetric zero-range and exclusion
hydrodynamic limit
asymmetric simple exclusion
asymmetric zero-range
equilibrium fluctuations
Science & Technology
topic Hyperbolic conservation law
Asymmetric zero-range and exclusion
hydrodynamic limit
asymmetric simple exclusion
asymmetric zero-range
equilibrium fluctuations
Science & Technology
description In these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity - the density of particles $\rho(t,\cdot)$. This equation is a hyperbolic conservation law of type $\partial_{t}\rho(t,u)+\nabla F(\rho(t,u))=0$, where the flux $F$ is a concave function. Taking these systems evolving on the Euler time scale $tN$, a Central Limit Theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system on a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than $tN^{4/3}$ there is still no temporal evolution. As a consequence the current across a characteristic vanishes up to this longer time scale.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/16877
url http://hdl.handle.net/1822/16877
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1023-6198 (Print)
10.1080/10236190903382657
http://dx.doi.org/10.1080/10236190903382657
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132608793149440