Massive MIMO Techniques Applied to 5G

Detalhes bibliográficos
Autor(a) principal: Silva, Mário Marques da
Data de Publicação: 2018
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11144/4224
Resumo: The evolution from 4G to 5G wireless systems is driven by the expected huge growth in user bit rates and overall system throughput. This requires a substantial spectral efficiency increase, while maintaining or even improving power efficiency. To accomplish this, one needs new transmission techniques, with the most promising ones being millimeter Waves (mm-Waves) and massive Multiple-Input Multiple-Output (m-MIMO). M-MIMO schemes involving several tens or even hundreds of antenna elements are expected to be central technologies for 5G systems. This can lead array power gain increments proportional to the number of antennas. It is considered the use of m-MIMO combined with single-carrier with frequency-domain equalization (SC-FDE) modulations, which aims to reduce the Peak-to-Average Power Ratio, as compared to other block transmission techniques (e.g., OFDM). A low-complexity iterative frequency-domain receiver based on the maximum ratio combining and equal gain combining approach is proposed. Moreover, it is proposed an iterative receiver, which considers an iterative detection and channel estimation. The channel estimates usually obtained with the help of pilot symbols and/or training sequences are multiplexed with data symbols. Since this leads to spectral degradation, the use of superimposed pilots (i.e., pilots added to data) was recently proposed as an efficient alternative. Our performance results show that the proposed receiver allows excellent performance with the use of the channel data obtained from the channel estimation, while keeping the complexity at low level.
id RCAP_c51051a1ccd4153b309fdbc286f025dc
oai_identifier_str oai:repositorio.ual.pt:11144/4224
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Massive MIMO Techniques Applied to 5GMIMO SystemMillimeter Waves5G SystemsBlock Transmission TechniquesThe evolution from 4G to 5G wireless systems is driven by the expected huge growth in user bit rates and overall system throughput. This requires a substantial spectral efficiency increase, while maintaining or even improving power efficiency. To accomplish this, one needs new transmission techniques, with the most promising ones being millimeter Waves (mm-Waves) and massive Multiple-Input Multiple-Output (m-MIMO). M-MIMO schemes involving several tens or even hundreds of antenna elements are expected to be central technologies for 5G systems. This can lead array power gain increments proportional to the number of antennas. It is considered the use of m-MIMO combined with single-carrier with frequency-domain equalization (SC-FDE) modulations, which aims to reduce the Peak-to-Average Power Ratio, as compared to other block transmission techniques (e.g., OFDM). A low-complexity iterative frequency-domain receiver based on the maximum ratio combining and equal gain combining approach is proposed. Moreover, it is proposed an iterative receiver, which considers an iterative detection and channel estimation. The channel estimates usually obtained with the help of pilot symbols and/or training sequences are multiplexed with data symbols. Since this leads to spectral degradation, the use of superimposed pilots (i.e., pilots added to data) was recently proposed as an efficient alternative. Our performance results show that the proposed receiver allows excellent performance with the use of the channel data obtained from the channel estimation, while keeping the complexity at low level.2019-05-24T10:16:34Z2018-09-17T00:00:00Z2018-09-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfhttp://hdl.handle.net/11144/4224engSilva, Mário Marques dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-11T02:10:16Zoai:repositorio.ual.pt:11144/4224Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:31:56.590274Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Massive MIMO Techniques Applied to 5G
title Massive MIMO Techniques Applied to 5G
spellingShingle Massive MIMO Techniques Applied to 5G
Silva, Mário Marques da
MIMO System
Millimeter Waves
5G Systems
Block Transmission Techniques
title_short Massive MIMO Techniques Applied to 5G
title_full Massive MIMO Techniques Applied to 5G
title_fullStr Massive MIMO Techniques Applied to 5G
title_full_unstemmed Massive MIMO Techniques Applied to 5G
title_sort Massive MIMO Techniques Applied to 5G
author Silva, Mário Marques da
author_facet Silva, Mário Marques da
author_role author
dc.contributor.author.fl_str_mv Silva, Mário Marques da
dc.subject.por.fl_str_mv MIMO System
Millimeter Waves
5G Systems
Block Transmission Techniques
topic MIMO System
Millimeter Waves
5G Systems
Block Transmission Techniques
description The evolution from 4G to 5G wireless systems is driven by the expected huge growth in user bit rates and overall system throughput. This requires a substantial spectral efficiency increase, while maintaining or even improving power efficiency. To accomplish this, one needs new transmission techniques, with the most promising ones being millimeter Waves (mm-Waves) and massive Multiple-Input Multiple-Output (m-MIMO). M-MIMO schemes involving several tens or even hundreds of antenna elements are expected to be central technologies for 5G systems. This can lead array power gain increments proportional to the number of antennas. It is considered the use of m-MIMO combined with single-carrier with frequency-domain equalization (SC-FDE) modulations, which aims to reduce the Peak-to-Average Power Ratio, as compared to other block transmission techniques (e.g., OFDM). A low-complexity iterative frequency-domain receiver based on the maximum ratio combining and equal gain combining approach is proposed. Moreover, it is proposed an iterative receiver, which considers an iterative detection and channel estimation. The channel estimates usually obtained with the help of pilot symbols and/or training sequences are multiplexed with data symbols. Since this leads to spectral degradation, the use of superimposed pilots (i.e., pilots added to data) was recently proposed as an efficient alternative. Our performance results show that the proposed receiver allows excellent performance with the use of the channel data obtained from the channel estimation, while keeping the complexity at low level.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-17T00:00:00Z
2018-09-17
2019-05-24T10:16:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11144/4224
url http://hdl.handle.net/11144/4224
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136800341491712