Object detection for single tree species identification with high resolution aerial images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/93643 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
id |
RCAP_d42e669384dfc95b9919b12c2fe55497 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/93643 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Object detection for single tree species identification with high resolution aerial imagesConvolutional Neural NetworkHigh Resolution Aerial ImagesImage ClassificationObject DetectionRegion-based Convolutional Neural NetworkRemote SensingUnnamed Aerial VehicleDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesObject recognition is one of the computer vision tasks developing rapidly with the invention of Region-based Convolutional Neural Network (RCNN). This thesis contains a study conducted using RCNN base object detection technique to identify palm trees in three datasets having RGB images taken by Unnamed Aerial Vehicles (UAVs). The method was entirely implemented using TensorFlow object detection API to compare the performance of pre-trained faster RCNN object detection models. According to the results, best performance was recorded with the highest overall accuracy of 93.1 ± 4.5 % and the highest speed of 9m 57s from faster RCNN model which was having inceptionv2 as feature extractor. The poorest performance was recorded with the lowest overall accuracy of 65.2 ± 10.9% and the lowest speed of 5h 39m 15s from faster RCNN model which was having inception_resnetv2 as feature extractor.Silva, Joel Dinis Baptista Ferreira daCabral, Pedro da Costa BritoPla Bañón, FilibertoRUNBoyagoda, Ekanayaka Mudiyanse Ralahamilage Chamodi Lakmali2020-03-02T18:27:32Z2020-02-272020-02-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/93643TID:202456897enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:43:48Zoai:run.unl.pt:10362/93643Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:43:48Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Object detection for single tree species identification with high resolution aerial images |
title |
Object detection for single tree species identification with high resolution aerial images |
spellingShingle |
Object detection for single tree species identification with high resolution aerial images Boyagoda, Ekanayaka Mudiyanse Ralahamilage Chamodi Lakmali Convolutional Neural Network High Resolution Aerial Images Image Classification Object Detection Region-based Convolutional Neural Network Remote Sensing Unnamed Aerial Vehicle |
title_short |
Object detection for single tree species identification with high resolution aerial images |
title_full |
Object detection for single tree species identification with high resolution aerial images |
title_fullStr |
Object detection for single tree species identification with high resolution aerial images |
title_full_unstemmed |
Object detection for single tree species identification with high resolution aerial images |
title_sort |
Object detection for single tree species identification with high resolution aerial images |
author |
Boyagoda, Ekanayaka Mudiyanse Ralahamilage Chamodi Lakmali |
author_facet |
Boyagoda, Ekanayaka Mudiyanse Ralahamilage Chamodi Lakmali |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Joel Dinis Baptista Ferreira da Cabral, Pedro da Costa Brito Pla Bañón, Filiberto RUN |
dc.contributor.author.fl_str_mv |
Boyagoda, Ekanayaka Mudiyanse Ralahamilage Chamodi Lakmali |
dc.subject.por.fl_str_mv |
Convolutional Neural Network High Resolution Aerial Images Image Classification Object Detection Region-based Convolutional Neural Network Remote Sensing Unnamed Aerial Vehicle |
topic |
Convolutional Neural Network High Resolution Aerial Images Image Classification Object Detection Region-based Convolutional Neural Network Remote Sensing Unnamed Aerial Vehicle |
description |
Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-02T18:27:32Z 2020-02-27 2020-02-27T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/93643 TID:202456897 |
url |
http://hdl.handle.net/10362/93643 |
identifier_str_mv |
TID:202456897 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545729661468672 |