Multidimensional scaling analysis of virus diseases
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/9413 |
Resumo: | Background and Objective: Viruses are infectious agents that replicate inside organisms and reveal a plethora of distinct characteristics.Viral infections spread in many ways, but often have devastating consequences and represent a huge danger for public health. It is important to design statistical and computational techniques capable of handling the available data and highlighting the most important features. Methods: This paper reviews the quantitative and qualitative behaviour of 22 infectious diseases caused by viruses. The information is compared and visualized by means of the multidimensional scaling technique. Results: The results are robust to uncertainties in the data and revealed to be consistent with clinical practice. Conclusions: The paper shows that the proposed methodology may represent a solid mathematical tool to tackle a larger number of virus and additional information about these infectious agents. |
id |
RCAP_e924ce331c4e014d97568baea8b6302c |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/9413 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multidimensional scaling analysis of virus diseasesMultidimensional scalingClusteringVirus diseasesBackground and Objective: Viruses are infectious agents that replicate inside organisms and reveal a plethora of distinct characteristics.Viral infections spread in many ways, but often have devastating consequences and represent a huge danger for public health. It is important to design statistical and computational techniques capable of handling the available data and highlighting the most important features. Methods: This paper reviews the quantitative and qualitative behaviour of 22 infectious diseases caused by viruses. The information is compared and visualized by means of the multidimensional scaling technique. Results: The results are robust to uncertainties in the data and revealed to be consistent with clinical practice. Conclusions: The paper shows that the proposed methodology may represent a solid mathematical tool to tackle a larger number of virus and additional information about these infectious agents.ElsevierRepositório Científico do Instituto Politécnico do PortoLopes, António M.Andrade, José P.Machado, J.A.Tenreiro20162117-01-01T00:00:00Z2016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/9413enghttp://dx.doi.org/10.1016/j.cmpb.2016.03.029metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:50:47Zoai:recipp.ipp.pt:10400.22/9413Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:30:00.925707Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multidimensional scaling analysis of virus diseases |
title |
Multidimensional scaling analysis of virus diseases |
spellingShingle |
Multidimensional scaling analysis of virus diseases Lopes, António M. Multidimensional scaling Clustering Virus diseases |
title_short |
Multidimensional scaling analysis of virus diseases |
title_full |
Multidimensional scaling analysis of virus diseases |
title_fullStr |
Multidimensional scaling analysis of virus diseases |
title_full_unstemmed |
Multidimensional scaling analysis of virus diseases |
title_sort |
Multidimensional scaling analysis of virus diseases |
author |
Lopes, António M. |
author_facet |
Lopes, António M. Andrade, José P. Machado, J.A.Tenreiro |
author_role |
author |
author2 |
Andrade, José P. Machado, J.A.Tenreiro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Lopes, António M. Andrade, José P. Machado, J.A.Tenreiro |
dc.subject.por.fl_str_mv |
Multidimensional scaling Clustering Virus diseases |
topic |
Multidimensional scaling Clustering Virus diseases |
description |
Background and Objective: Viruses are infectious agents that replicate inside organisms and reveal a plethora of distinct characteristics.Viral infections spread in many ways, but often have devastating consequences and represent a huge danger for public health. It is important to design statistical and computational techniques capable of handling the available data and highlighting the most important features. Methods: This paper reviews the quantitative and qualitative behaviour of 22 infectious diseases caused by viruses. The information is compared and visualized by means of the multidimensional scaling technique. Results: The results are robust to uncertainties in the data and revealed to be consistent with clinical practice. Conclusions: The paper shows that the proposed methodology may represent a solid mathematical tool to tackle a larger number of virus and additional information about these infectious agents. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2117-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/9413 |
url |
http://hdl.handle.net/10400.22/9413 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1016/j.cmpb.2016.03.029 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131395870687232 |