Análise de sistemas não lineares incertos: uma abordagem LMI

Detalhes bibliográficos
Autor(a) principal: Coutinho,Daniel Ferreira
Data de Publicação: 2002
Outros Autores: Trofino,Alexandre
Tipo de documento: Artigo
Idioma: por
Título da fonte: Sba: Controle & Automação Sociedade Brasileira de Automatica
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592002000200002
Resumo: Neste artigo, aborda-se o problema de análise de estabilidade local do ponto de equilíbrio de sistemas não lineares incertos e de seu respectivo domínio de atração. São propostas condições em termos de inequações matriciais lineares (LMIs) para o problema de estabilidade robusta local baseadas em funções de Lyapunov que são funções polinomiais dos estados e dos parâmetros incertos. O problema de maximização da estimativa do domínio de atração consiste na maximização de uma curva de nível dentro de um dado politopo. Exemplos numéricos demonstram o desempenho desta metodologia.
id SBA-2_de3827cff74aa2e8f3d9961860642062
oai_identifier_str oai:scielo:S0103-17592002000200002
network_acronym_str SBA-2
network_name_str Sba: Controle & Automação Sociedade Brasileira de Automatica
repository_id_str
spelling Análise de sistemas não lineares incertos: uma abordagem LMISistemas não lineares incertosinequações matriciais linearesdomínio de atraçãofunções de Lyapunov polinomiaisNeste artigo, aborda-se o problema de análise de estabilidade local do ponto de equilíbrio de sistemas não lineares incertos e de seu respectivo domínio de atração. São propostas condições em termos de inequações matriciais lineares (LMIs) para o problema de estabilidade robusta local baseadas em funções de Lyapunov que são funções polinomiais dos estados e dos parâmetros incertos. O problema de maximização da estimativa do domínio de atração consiste na maximização de uma curva de nível dentro de um dado politopo. Exemplos numéricos demonstram o desempenho desta metodologia.Sociedade Brasileira de Automática2002-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592002000200002Sba: Controle & Automação Sociedade Brasileira de Automatica v.13 n.2 2002reponame:Sba: Controle & Automação Sociedade Brasileira de Automaticainstname:Sociedade Brasileira de Automática (SBA)instacron:SBA10.1590/S0103-17592002000200002info:eu-repo/semantics/openAccessCoutinho,Daniel FerreiraTrofino,Alexandrepor2003-01-15T00:00:00Zoai:scielo:S0103-17592002000200002Revistahttps://www.sba.org.br/revista/PUBhttps://old.scielo.br/oai/scielo-oai.php||revista_sba@fee.unicamp.br1807-03450103-1759opendoar:2003-01-15T00:00Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)false
dc.title.none.fl_str_mv Análise de sistemas não lineares incertos: uma abordagem LMI
title Análise de sistemas não lineares incertos: uma abordagem LMI
spellingShingle Análise de sistemas não lineares incertos: uma abordagem LMI
Coutinho,Daniel Ferreira
Sistemas não lineares incertos
inequações matriciais lineares
domínio de atração
funções de Lyapunov polinomiais
title_short Análise de sistemas não lineares incertos: uma abordagem LMI
title_full Análise de sistemas não lineares incertos: uma abordagem LMI
title_fullStr Análise de sistemas não lineares incertos: uma abordagem LMI
title_full_unstemmed Análise de sistemas não lineares incertos: uma abordagem LMI
title_sort Análise de sistemas não lineares incertos: uma abordagem LMI
author Coutinho,Daniel Ferreira
author_facet Coutinho,Daniel Ferreira
Trofino,Alexandre
author_role author
author2 Trofino,Alexandre
author2_role author
dc.contributor.author.fl_str_mv Coutinho,Daniel Ferreira
Trofino,Alexandre
dc.subject.por.fl_str_mv Sistemas não lineares incertos
inequações matriciais lineares
domínio de atração
funções de Lyapunov polinomiais
topic Sistemas não lineares incertos
inequações matriciais lineares
domínio de atração
funções de Lyapunov polinomiais
description Neste artigo, aborda-se o problema de análise de estabilidade local do ponto de equilíbrio de sistemas não lineares incertos e de seu respectivo domínio de atração. São propostas condições em termos de inequações matriciais lineares (LMIs) para o problema de estabilidade robusta local baseadas em funções de Lyapunov que são funções polinomiais dos estados e dos parâmetros incertos. O problema de maximização da estimativa do domínio de atração consiste na maximização de uma curva de nível dentro de um dado politopo. Exemplos numéricos demonstram o desempenho desta metodologia.
publishDate 2002
dc.date.none.fl_str_mv 2002-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592002000200002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592002000200002
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 10.1590/S0103-17592002000200002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Automática
publisher.none.fl_str_mv Sociedade Brasileira de Automática
dc.source.none.fl_str_mv Sba: Controle & Automação Sociedade Brasileira de Automatica v.13 n.2 2002
reponame:Sba: Controle & Automação Sociedade Brasileira de Automatica
instname:Sociedade Brasileira de Automática (SBA)
instacron:SBA
instname_str Sociedade Brasileira de Automática (SBA)
instacron_str SBA
institution SBA
reponame_str Sba: Controle & Automação Sociedade Brasileira de Automatica
collection Sba: Controle & Automação Sociedade Brasileira de Automatica
repository.name.fl_str_mv Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)
repository.mail.fl_str_mv ||revista_sba@fee.unicamp.br
_version_ 1754824563898712064