Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction

Detalhes bibliográficos
Autor(a) principal: Almeida, Joyce Fernandes
Data de Publicação: 2019
Outros Autores: Kiill, Keila Bossolani
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Ensino de Bioquímica
Texto Completo: http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/P6
Resumo: In the teaching of biochemistry the understanding of three dimensional nature has been favored by the use of visualization tools and representation of concepts and processes. Among these tools are the concrete models that allow, in addition to conceptual learning, the development of visual skills fundamental to the transition between the macroscopic and submicroscopic level. This work aims to present the contributions of the construction and use of 3D printed models for the learning of the concept of enzyme-substrate interaction, by the chemistry graduates enrolled in the compulsory discipline of Biochemistry. Drawings were used to investigate the idea of "enzyme-substrate interaction" at the beginning and end of a sequence of 3D modeling activities carried out by students. The analysis of the use of 3D printed models in the teaching and learning process of the concept of enzyme-substrate interaction was performed by comparing the elements coded in the drawings before and after participating in 3D modeling activities. The results show that students' participation in the construction of 3D printed models contributed to the perception of chemical aspects of the enzyme-substrate interaction, in order to understand the complexity of the phenomena in question.
id SBBQM-1_3cccee9780f7d4a2c0c4abcc2c099b51
oai_identifier_str oai:ojs.bioquimica.org.br:article/858
network_acronym_str SBBQM-1
network_name_str Revista de Ensino de Bioquímica
repository_id_str
spelling Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interactionConstrução de Modelos 3D impressos como estratégia para a aprendizagem do conceito de interação enzima-substratobiochemistry teaching; 3D printed models; 3D modeling; enzyme-substrate interactionModelos; Modelagem;ensino de bioquímica; modelos 3D impressos; modelagem 3D; interação enzima-substratoIn the teaching of biochemistry the understanding of three dimensional nature has been favored by the use of visualization tools and representation of concepts and processes. Among these tools are the concrete models that allow, in addition to conceptual learning, the development of visual skills fundamental to the transition between the macroscopic and submicroscopic level. This work aims to present the contributions of the construction and use of 3D printed models for the learning of the concept of enzyme-substrate interaction, by the chemistry graduates enrolled in the compulsory discipline of Biochemistry. Drawings were used to investigate the idea of "enzyme-substrate interaction" at the beginning and end of a sequence of 3D modeling activities carried out by students. The analysis of the use of 3D printed models in the teaching and learning process of the concept of enzyme-substrate interaction was performed by comparing the elements coded in the drawings before and after participating in 3D modeling activities. The results show that students' participation in the construction of 3D printed models contributed to the perception of chemical aspects of the enzyme-substrate interaction, in order to understand the complexity of the phenomena in question.No ensino de Bioquímica a compreensão da natureza tridimensional tem sido favorecida pelo uso de ferramentas de visualização e representação de conceitos e processos. Entre estas ferramentas encontram-se os modelos concretos, que permitem, além da aprendizagem conceitual, o desenvolvimento de habilidades visuais fundamentais para a transição entre o nível macroscópico e submicroscópico. Este trabalho tem como objetivo apresentar as contribuições da construção e do uso de modelos 3D impressos para a aprendizagem do conceito de interação enzima-substrato, pelos licenciandos em Química matriculados na disciplina obrigatória de Bioquímica. Desenhos foram utilizados para investigar a ideia de “interação enzima-substrato”, no início e no final de uma sequência de atividades de modelagem 3D realizadas pelos licenciandos. A análise do uso dos modelos 3D impressos no processo de ensino e aprendizagem do conceito de interação enzima-substrato foi realizada comparando-se os elementos codificados nos desenhos antes e após a participação nas atividades de modelagem 3D. Os resultados apontam que a participação dos estudantes na construção dos modelos 3D impressos contribuiu para a percepção de aspectos químicos da interação enzima-substrato, no sentido de compreender a complexidade do fenômeno em questão.Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBqUnifal-MGAlmeida, Joyce FernandesKiill, Keila Bossolani2019-06-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionanálise de conteúdoapplication/pdfhttp://bioquimica.org.br/revista/ojs/index.php/REB/article/view/P610.16923/reb.v17i0.858Revista de Ensino de Bioquímica; v. 17 (2019): Especial; 74 - 93Revista de Enseñanza de Bioquímica; v. 17 (2019): Especial; 74 - 93Journal of Biochemistry Education; v. 17 (2019): Especial; 74 - 93Revista de Ensino de Bioquímica; v. 17 (2019): Especial; 74 - 932318-8790reponame:Revista de Ensino de Bioquímicainstname:Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)instacron:SBBQMporhttp://bioquimica.org.br/revista/ojs/index.php/REB/article/view/P6/673/*ref*/Blanco-Anaya P, Justi R, Bustamante JD. Challenges and opportunities in analysing students modelling. Int. J. Sci. Educ. 2017; 39(3): 377-402./*ref*/Gilbert JK, Treagust. Ferreira CR, Arroio A, Bustamante JD. Multiple representations in chemical education. Int. J. Sci. Educ. 2009; 31(16): 2271-2273./*ref*/Justi R. La enseñanza de ciências basada em la elaboración de modelos. Enseñanza de Las Ciencias. 2006; 24(2): 173-184./*ref*/Justi R. Modelos e modelagem no ensino de química. In: Santos WLP, Maldaner OA, (Org.). Ensino de Química em Foco. Rio Grande do Sul: Unijuí; 2010./*ref*/Lee SW-Y, Chang H-Y, Wu H-K. Students’ views of scientific models and modeling: do representational characteristics of models and students’ educational levels matter?. Research in Science Education. 2015; 47(2): 305-328./*ref*/Justi R. Relações entre argumentação e modelagem no contexto da ciência e do ensino de ciências. Ensaio Pesquisa e Educação em Ciências. 2015; 17(n. especial): 31-48./*ref*/Ferreira CR, Arroio A, Bustamante JD. Visualizações no ensino de química: concepções de professores em formação inicial. QNEsc. 2013; 35(3): 199-208./*ref*/Smiar K, Mendez JD. Creating and using interactive, 3D-printed models to improve student comprehension of the bohr model of the atom, bond polarity, and hybridization. J. Chem. Educ. 2016; 93(9): 1591-1594./*ref*/Canessa E. Low-cost 3D printing for science, education and sustainable development. In: Canessa, E.; Fonda, C.; Zennaro, Ed(s). Low-cost 3D Printing. The Abdus Salam International Centre for Theoretical Physics. 2013. 199 p./*ref*/Calcabrini M, Onna D. Exploring the gel state: optical determination of gelation times and transport properties of gels with an inexpensive 3D-printed spectrophotometer. J. Chem. Educ. 2019; 96(1): 116-123./*ref*/Carroll FA, Blauch DN. 3D printing of molecular models with calculated geometries and p orbital isosurfaces. J. Chem. Educ. 2017; 94(7): 886-891./*ref*/Cataldo R, Griffith KM, Fogarty. Hands-on hybridization: 3D-printed models of hybrid orbitals. J. Chem. Educ. 2018; 95(9): 1601-1606./*ref*/Fourches D, Feducia J. Student-guided three-dimensional printing activity in large lecture courses: a practical guideline. J. Chem. Educ. 2019; 96(2): 291-295./*ref*/Jones OAH, Spencer MJS. A simplified method for the 3D printing of molecular models for chemical education. J. Chem. Educ. 2018; 95(1): 88-96./*ref*/Gilbert JK. Representations and models: aspects of scientific literacy. In: Tytler R, Prain V, Hubber P, Waldrip B. Ed(s). Constructing Representations to Learn in Science. Rotterdam: Sense Publishers; 2013./*ref*/Linenberger KJ, Bretz SL. Biochemistry students` ideas about how an enzyme interacts with a substrate. Biochem, Mol. Biol. Educ. 2015; 43(4): 213-222./*ref*/Sangiogo FA, Zanon LB. Reflexões sobre modelos e representações na formação de professores com foco na compreensão conceitual da catálise enzimática. QNEsc. 2012; 34(1): 26-34./*ref*/Pérez GM, Galindo AAG, Galli LG. Enseñanza de la evolución: fundamentos para el diseño de uma propuesta didáctica basada em la modelización y la metacognición sobre los obstáculos epistemológicos. Rev. Eureka sobre Enseñanza y Divulgación de lãs Ciencias. 2018; 15(2): 2102./*ref*/Justi R, Gilbert JK. Teachers' views on the nature of models. Int. J. Sci. Educ. 2003; 25(11): 1369-1386./*ref*/Griffith KM, Cataldo R, Fogarty KH. Do-it-yourself: 3D models of hydrogenic orbitals through 3D printing. J. Chem. Educ. 2016; 93(9): 1586-1590./*ref*/Kaliakin DS, Zaari RR, Varganov. 3D printed potential and free energy surfaces for teaching fundamental concepts in physical chemistry. J. Chem. Educ. 2015; 92(12): 2106-2112./*ref*/Meyer SC. 3D printing of protein models in an undergraduate laboratory: leucine zippers. J. Chem. Educ. 2015; 92(12): 2120-2125./*ref*/Scalfani VF, Vaid TP. 3D printed molecules and extended solid models for teaching symmetry and point groups. J. Chem. Educ. 2014; 91(8): 1174-1180./*ref*/Brown A. 3D printing in instructional settings: identifying a curricular hierarchy of activities. Assoc. for Educ. Communications Technology. 2015; 59(5): 16-24./*ref*/Vaz M, Choupina A. Lipases: biocatalizadores da hidrólise de triacilglicerois. Revista Eletrônica de Biologia. 2012; 5(3): 42-58./*ref*/Muri EMF. Proteases virais: importantes alvos terapêuticos de compostos peptideomiméticos. Química Nova. 2014; 37(2): 308-316./*ref*/Creswell JW. Investigação qualitativa e projeto de pesquisa: escolhendo entre cinco abordagens. 3 Ed. São Paulo: Penso; 2014./*ref*/Sakabe NJ, Marson GA, TORRES BB. Estudo interativo da estrutura e função de proteínas. Biblioteca Digital de Ciências; 2006. [acesso em 09 Jul. 2018]. Disponível em: https://www.bdc.ib.unicamp.br/bdc/visualizarMaterial.php?idMaterial=247./*ref*/Galembeck E, Pedroso Filho CES. Enzyme. Biblioteca Digital de Ciências; 2007. [acesso em 09 Jul. 2018]. [acesso em 09 Jul. 2018]. Disponível em: tps://www2.ib.unicamp.br/lte/bdc/visualizarMaterial.php?idMaterial=528&nL=723#.WyBnYtQrLiw./*ref*/Galembeck E, Pedroso Filho CES, Torres BB. A cinética da reação enzimática. Biblioteca Digital de Ciências; 2007. [acesso em 09 Jul. 2018]. [acesso em 09 Jul. 2018]. Disponível em: https://www.bdc.ib.unicamp.br/bdc/visualizarMaterial.php?idMaterial=527.Alfenas, Minas Gerais, Brasilestudante de graduaçãoDireitos autorais 2019 Revista de Ensino de Bioquímicahttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2022-03-25T17:24:18Zoai:ojs.bioquimica.org.br:article/858Revistahttp://bioquimica.org.br/revista/ojs/index.php/REBONGhttp://bioquimica.org.br/revista/ojs/index.php/REB/oaicontato@bioquimica.org.br||ensinodebioquimica@gmail.com2318-87901677-2318opendoar:2022-03-25T17:24:18Revista de Ensino de Bioquímica - Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)false
dc.title.none.fl_str_mv Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction
Construção de Modelos 3D impressos como estratégia para a aprendizagem do conceito de interação enzima-substrato
title Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction
spellingShingle Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction
Almeida, Joyce Fernandes
biochemistry teaching; 3D printed models; 3D modeling; enzyme-substrate interaction
Modelos; Modelagem;
ensino de bioquímica; modelos 3D impressos; modelagem 3D; interação enzima-substrato
title_short Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction
title_full Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction
title_fullStr Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction
title_full_unstemmed Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction
title_sort Construction of 3D Models printed as strategy for learning the concept of enzyme-substrate interaction
author Almeida, Joyce Fernandes
author_facet Almeida, Joyce Fernandes
Kiill, Keila Bossolani
author_role author
author2 Kiill, Keila Bossolani
author2_role author
dc.contributor.none.fl_str_mv Unifal-MG

dc.contributor.author.fl_str_mv Almeida, Joyce Fernandes
Kiill, Keila Bossolani
dc.subject.none.fl_str_mv
dc.subject.por.fl_str_mv biochemistry teaching; 3D printed models; 3D modeling; enzyme-substrate interaction
Modelos; Modelagem;
ensino de bioquímica; modelos 3D impressos; modelagem 3D; interação enzima-substrato
topic biochemistry teaching; 3D printed models; 3D modeling; enzyme-substrate interaction
Modelos; Modelagem;
ensino de bioquímica; modelos 3D impressos; modelagem 3D; interação enzima-substrato
description In the teaching of biochemistry the understanding of three dimensional nature has been favored by the use of visualization tools and representation of concepts and processes. Among these tools are the concrete models that allow, in addition to conceptual learning, the development of visual skills fundamental to the transition between the macroscopic and submicroscopic level. This work aims to present the contributions of the construction and use of 3D printed models for the learning of the concept of enzyme-substrate interaction, by the chemistry graduates enrolled in the compulsory discipline of Biochemistry. Drawings were used to investigate the idea of "enzyme-substrate interaction" at the beginning and end of a sequence of 3D modeling activities carried out by students. The analysis of the use of 3D printed models in the teaching and learning process of the concept of enzyme-substrate interaction was performed by comparing the elements coded in the drawings before and after participating in 3D modeling activities. The results show that students' participation in the construction of 3D printed models contributed to the perception of chemical aspects of the enzyme-substrate interaction, in order to understand the complexity of the phenomena in question.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-03
dc.type.none.fl_str_mv




dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
análise de conteúdo
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/P6
10.16923/reb.v17i0.858
url http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/P6
identifier_str_mv 10.16923/reb.v17i0.858
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/P6/673
/*ref*/Blanco-Anaya P, Justi R, Bustamante JD. Challenges and opportunities in analysing students modelling. Int. J. Sci. Educ. 2017; 39(3): 377-402.
/*ref*/Gilbert JK, Treagust. Ferreira CR, Arroio A, Bustamante JD. Multiple representations in chemical education. Int. J. Sci. Educ. 2009; 31(16): 2271-2273.
/*ref*/Justi R. La enseñanza de ciências basada em la elaboración de modelos. Enseñanza de Las Ciencias. 2006; 24(2): 173-184.
/*ref*/Justi R. Modelos e modelagem no ensino de química. In: Santos WLP, Maldaner OA, (Org.). Ensino de Química em Foco. Rio Grande do Sul: Unijuí; 2010.
/*ref*/Lee SW-Y, Chang H-Y, Wu H-K. Students’ views of scientific models and modeling: do representational characteristics of models and students’ educational levels matter?. Research in Science Education. 2015; 47(2): 305-328.
/*ref*/Justi R. Relações entre argumentação e modelagem no contexto da ciência e do ensino de ciências. Ensaio Pesquisa e Educação em Ciências. 2015; 17(n. especial): 31-48.
/*ref*/Ferreira CR, Arroio A, Bustamante JD. Visualizações no ensino de química: concepções de professores em formação inicial. QNEsc. 2013; 35(3): 199-208.
/*ref*/Smiar K, Mendez JD. Creating and using interactive, 3D-printed models to improve student comprehension of the bohr model of the atom, bond polarity, and hybridization. J. Chem. Educ. 2016; 93(9): 1591-1594.
/*ref*/Canessa E. Low-cost 3D printing for science, education and sustainable development. In: Canessa, E.; Fonda, C.; Zennaro, Ed(s). Low-cost 3D Printing. The Abdus Salam International Centre for Theoretical Physics. 2013. 199 p.
/*ref*/Calcabrini M, Onna D. Exploring the gel state: optical determination of gelation times and transport properties of gels with an inexpensive 3D-printed spectrophotometer. J. Chem. Educ. 2019; 96(1): 116-123.
/*ref*/Carroll FA, Blauch DN. 3D printing of molecular models with calculated geometries and p orbital isosurfaces. J. Chem. Educ. 2017; 94(7): 886-891.
/*ref*/Cataldo R, Griffith KM, Fogarty. Hands-on hybridization: 3D-printed models of hybrid orbitals. J. Chem. Educ. 2018; 95(9): 1601-1606.
/*ref*/Fourches D, Feducia J. Student-guided three-dimensional printing activity in large lecture courses: a practical guideline. J. Chem. Educ. 2019; 96(2): 291-295.
/*ref*/Jones OAH, Spencer MJS. A simplified method for the 3D printing of molecular models for chemical education. J. Chem. Educ. 2018; 95(1): 88-96.
/*ref*/Gilbert JK. Representations and models: aspects of scientific literacy. In: Tytler R, Prain V, Hubber P, Waldrip B. Ed(s). Constructing Representations to Learn in Science. Rotterdam: Sense Publishers; 2013.
/*ref*/Linenberger KJ, Bretz SL. Biochemistry students` ideas about how an enzyme interacts with a substrate. Biochem, Mol. Biol. Educ. 2015; 43(4): 213-222.
/*ref*/Sangiogo FA, Zanon LB. Reflexões sobre modelos e representações na formação de professores com foco na compreensão conceitual da catálise enzimática. QNEsc. 2012; 34(1): 26-34.
/*ref*/Pérez GM, Galindo AAG, Galli LG. Enseñanza de la evolución: fundamentos para el diseño de uma propuesta didáctica basada em la modelización y la metacognición sobre los obstáculos epistemológicos. Rev. Eureka sobre Enseñanza y Divulgación de lãs Ciencias. 2018; 15(2): 2102.
/*ref*/Justi R, Gilbert JK. Teachers' views on the nature of models. Int. J. Sci. Educ. 2003; 25(11): 1369-1386.
/*ref*/Griffith KM, Cataldo R, Fogarty KH. Do-it-yourself: 3D models of hydrogenic orbitals through 3D printing. J. Chem. Educ. 2016; 93(9): 1586-1590.
/*ref*/Kaliakin DS, Zaari RR, Varganov. 3D printed potential and free energy surfaces for teaching fundamental concepts in physical chemistry. J. Chem. Educ. 2015; 92(12): 2106-2112.
/*ref*/Meyer SC. 3D printing of protein models in an undergraduate laboratory: leucine zippers. J. Chem. Educ. 2015; 92(12): 2120-2125.
/*ref*/Scalfani VF, Vaid TP. 3D printed molecules and extended solid models for teaching symmetry and point groups. J. Chem. Educ. 2014; 91(8): 1174-1180.
/*ref*/Brown A. 3D printing in instructional settings: identifying a curricular hierarchy of activities. Assoc. for Educ. Communications Technology. 2015; 59(5): 16-24.
/*ref*/Vaz M, Choupina A. Lipases: biocatalizadores da hidrólise de triacilglicerois. Revista Eletrônica de Biologia. 2012; 5(3): 42-58.
/*ref*/Muri EMF. Proteases virais: importantes alvos terapêuticos de compostos peptideomiméticos. Química Nova. 2014; 37(2): 308-316.
/*ref*/Creswell JW. Investigação qualitativa e projeto de pesquisa: escolhendo entre cinco abordagens. 3 Ed. São Paulo: Penso; 2014.
/*ref*/Sakabe NJ, Marson GA, TORRES BB. Estudo interativo da estrutura e função de proteínas. Biblioteca Digital de Ciências; 2006. [acesso em 09 Jul. 2018]. Disponível em: https://www.bdc.ib.unicamp.br/bdc/visualizarMaterial.php?idMaterial=247.
/*ref*/Galembeck E, Pedroso Filho CES. Enzyme. Biblioteca Digital de Ciências; 2007. [acesso em 09 Jul. 2018]. [acesso em 09 Jul. 2018]. Disponível em: tps://www2.ib.unicamp.br/lte/bdc/visualizarMaterial.php?idMaterial=528&nL=723#.WyBnYtQrLiw.
/*ref*/Galembeck E, Pedroso Filho CES, Torres BB. A cinética da reação enzimática. Biblioteca Digital de Ciências; 2007. [acesso em 09 Jul. 2018]. [acesso em 09 Jul. 2018]. Disponível em: https://www.bdc.ib.unicamp.br/bdc/visualizarMaterial.php?idMaterial=527.
dc.rights.driver.fl_str_mv Direitos autorais 2019 Revista de Ensino de Bioquímica
http://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2019 Revista de Ensino de Bioquímica
http://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv


Alfenas, Minas Gerais, Brasil

estudante de graduação
dc.publisher.none.fl_str_mv Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq
publisher.none.fl_str_mv Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq
dc.source.none.fl_str_mv Revista de Ensino de Bioquímica; v. 17 (2019): Especial; 74 - 93
Revista de Enseñanza de Bioquímica; v. 17 (2019): Especial; 74 - 93
Journal of Biochemistry Education; v. 17 (2019): Especial; 74 - 93
Revista de Ensino de Bioquímica; v. 17 (2019): Especial; 74 - 93
2318-8790
reponame:Revista de Ensino de Bioquímica
instname:Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
instacron:SBBQM
instname_str Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
instacron_str SBBQM
institution SBBQM
reponame_str Revista de Ensino de Bioquímica
collection Revista de Ensino de Bioquímica
repository.name.fl_str_mv Revista de Ensino de Bioquímica - Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
repository.mail.fl_str_mv contato@bioquimica.org.br||ensinodebioquimica@gmail.com
_version_ 1752126677356380160