Electrically driven fertilizer applicator controlled by fuzzy logic

Detalhes bibliográficos
Autor(a) principal: Garcia,Angel P.
Data de Publicação: 2014
Outros Autores: Cappelli,Nelson L., Umezu,Claudio K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162014000300014
Resumo: The present study shows the development, simulation and actual implementation of a closed-loop controller based on fuzzy logic that is able to regulate and standardize the mass flow of a helical fertilizer applicator. The control algorithm was developed using MATLAB's Fuzzy Logic Toolbox. Both open and closed-loop simulations of the controller were performed in MATLAB's Simulink environment. The instantaneous deviation of the mass flow from the set point (SP), its derivative, the equipment´s translation velocity and acceleration were all used as input signals for the controller, whereas the voltage of the applicator's DC electric motor (DCEM) was driven by the controller as output signal. Calibration and validation of the rules and membership functions of the fuzzy logic were accomplished in the computer simulation phase, taking into account the system's response to SP changes. The mass flow variation coefficient, measured in experimental tests, ranged from 6.32 to 13.18%. The steady state error fell between -0.72 and 0.13g s-1 and the recorded average rise time of the system was 0.38 s. The implemented controller was able to both damp the oscillations in mass flow that are characteristic of helical fertilizer applicators, and to effectively respond to SP variations.
id SBEA-1_cc9c5794215428c7a386e92cd9819fca
oai_identifier_str oai:scielo:S0100-69162014000300014
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling Electrically driven fertilizer applicator controlled by fuzzy logicfertilizer applicatoragricultural machineryclosed-loop controlThe present study shows the development, simulation and actual implementation of a closed-loop controller based on fuzzy logic that is able to regulate and standardize the mass flow of a helical fertilizer applicator. The control algorithm was developed using MATLAB's Fuzzy Logic Toolbox. Both open and closed-loop simulations of the controller were performed in MATLAB's Simulink environment. The instantaneous deviation of the mass flow from the set point (SP), its derivative, the equipment´s translation velocity and acceleration were all used as input signals for the controller, whereas the voltage of the applicator's DC electric motor (DCEM) was driven by the controller as output signal. Calibration and validation of the rules and membership functions of the fuzzy logic were accomplished in the computer simulation phase, taking into account the system's response to SP changes. The mass flow variation coefficient, measured in experimental tests, ranged from 6.32 to 13.18%. The steady state error fell between -0.72 and 0.13g s-1 and the recorded average rise time of the system was 0.38 s. The implemented controller was able to both damp the oscillations in mass flow that are characteristic of helical fertilizer applicators, and to effectively respond to SP variations.Associação Brasileira de Engenharia Agrícola2014-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162014000300014Engenharia Agrícola v.34 n.3 2014reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/S0100-69162014000300014info:eu-repo/semantics/openAccessGarcia,Angel P.Cappelli,Nelson L.Umezu,Claudio K.eng2014-08-05T00:00:00Zoai:scielo:S0100-69162014000300014Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2014-08-05T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv Electrically driven fertilizer applicator controlled by fuzzy logic
title Electrically driven fertilizer applicator controlled by fuzzy logic
spellingShingle Electrically driven fertilizer applicator controlled by fuzzy logic
Garcia,Angel P.
fertilizer applicator
agricultural machinery
closed-loop control
title_short Electrically driven fertilizer applicator controlled by fuzzy logic
title_full Electrically driven fertilizer applicator controlled by fuzzy logic
title_fullStr Electrically driven fertilizer applicator controlled by fuzzy logic
title_full_unstemmed Electrically driven fertilizer applicator controlled by fuzzy logic
title_sort Electrically driven fertilizer applicator controlled by fuzzy logic
author Garcia,Angel P.
author_facet Garcia,Angel P.
Cappelli,Nelson L.
Umezu,Claudio K.
author_role author
author2 Cappelli,Nelson L.
Umezu,Claudio K.
author2_role author
author
dc.contributor.author.fl_str_mv Garcia,Angel P.
Cappelli,Nelson L.
Umezu,Claudio K.
dc.subject.por.fl_str_mv fertilizer applicator
agricultural machinery
closed-loop control
topic fertilizer applicator
agricultural machinery
closed-loop control
description The present study shows the development, simulation and actual implementation of a closed-loop controller based on fuzzy logic that is able to regulate and standardize the mass flow of a helical fertilizer applicator. The control algorithm was developed using MATLAB's Fuzzy Logic Toolbox. Both open and closed-loop simulations of the controller were performed in MATLAB's Simulink environment. The instantaneous deviation of the mass flow from the set point (SP), its derivative, the equipment´s translation velocity and acceleration were all used as input signals for the controller, whereas the voltage of the applicator's DC electric motor (DCEM) was driven by the controller as output signal. Calibration and validation of the rules and membership functions of the fuzzy logic were accomplished in the computer simulation phase, taking into account the system's response to SP changes. The mass flow variation coefficient, measured in experimental tests, ranged from 6.32 to 13.18%. The steady state error fell between -0.72 and 0.13g s-1 and the recorded average rise time of the system was 0.38 s. The implemented controller was able to both damp the oscillations in mass flow that are characteristic of helical fertilizer applicators, and to effectively respond to SP variations.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162014000300014
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162014000300014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-69162014000300014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.34 n.3 2014
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126271939149824