Ultrasonic method of microvibration detection: part II - additional processing method and applications

Detalhes bibliográficos
Autor(a) principal: Costa Júnior,José Francisco Silva
Data de Publicação: 2017
Outros Autores: Machado,João Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research on Biomedical Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300218
Resumo: Abstract Introduction In the last 28 years, the scientific community has been using elastography to evaluate the mechanical properties of biological tissue. The aim of this work was the optimization of the UDmV method, presented in Part I of the series, by means of modifying the technique employed to generate the reference sine and cosine functions, used for phase-quadrature demodulation, and determining how this modification improved the performance of the method. Additionally, the UDmV was employed to characterize the acoustic and mechanical properties of a 7% gelatin phantom. Methods A focused transducer, T F, with a nominal frequency of 2.25 MHz, was used to induce the shear waves, with frequency of 97.644 Hz. Then, the modified UDmV method was used to extract the phase and quadrature components from ultrasonic RF echo-signals collected from four positions along the propagation path of the shear wave, which allowed the investigation of the medium vibration caused by wave propagation. The phase velocity, c s, and attenuation, α s, of the phantom were measured and employed in the calculation of shear modulus, μ, and viscosity, η. Results The computational simulation demonstrated that the modification in UDmV method resulted in more accurate and precise estimates of the initial phases of the reference sinusoidal functions used for phase-quadrature demodulation. The values for c s and μ of 1.31 ± 0.01 m·s-1 and 1.66 ± 0.01 kPa, respectively, are very close to the values found in the literature (1.32 m·s-1 and 1.61 kPa) for the same material. Conclusion The UDmV method allowed estimating of the acoustic and viscoelastic parameters of phantom.
id SBEB-1_be3a9d8953295373c6f6caaba8a5c50b
oai_identifier_str oai:scielo:S2446-47402017000300218
network_acronym_str SBEB-1
network_name_str Research on Biomedical Engineering (Online)
repository_id_str
spelling Ultrasonic method of microvibration detection: part II - additional processing method and applicationsUltrasoundShear waveShear modulusViscosityUDmVKalman FilterAbstract Introduction In the last 28 years, the scientific community has been using elastography to evaluate the mechanical properties of biological tissue. The aim of this work was the optimization of the UDmV method, presented in Part I of the series, by means of modifying the technique employed to generate the reference sine and cosine functions, used for phase-quadrature demodulation, and determining how this modification improved the performance of the method. Additionally, the UDmV was employed to characterize the acoustic and mechanical properties of a 7% gelatin phantom. Methods A focused transducer, T F, with a nominal frequency of 2.25 MHz, was used to induce the shear waves, with frequency of 97.644 Hz. Then, the modified UDmV method was used to extract the phase and quadrature components from ultrasonic RF echo-signals collected from four positions along the propagation path of the shear wave, which allowed the investigation of the medium vibration caused by wave propagation. The phase velocity, c s, and attenuation, α s, of the phantom were measured and employed in the calculation of shear modulus, μ, and viscosity, η. Results The computational simulation demonstrated that the modification in UDmV method resulted in more accurate and precise estimates of the initial phases of the reference sinusoidal functions used for phase-quadrature demodulation. The values for c s and μ of 1.31 ± 0.01 m·s-1 and 1.66 ± 0.01 kPa, respectively, are very close to the values found in the literature (1.32 m·s-1 and 1.61 kPa) for the same material. Conclusion The UDmV method allowed estimating of the acoustic and viscoelastic parameters of phantom.Sociedade Brasileira de Engenharia Biomédica2017-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300218Research on Biomedical Engineering v.33 n.3 2017reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.01617info:eu-repo/semantics/openAccessCosta Júnior,José Francisco SilvaMachado,João Carloseng2018-08-02T00:00:00Zoai:scielo:S2446-47402017000300218Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2018-08-02T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false
dc.title.none.fl_str_mv Ultrasonic method of microvibration detection: part II - additional processing method and applications
title Ultrasonic method of microvibration detection: part II - additional processing method and applications
spellingShingle Ultrasonic method of microvibration detection: part II - additional processing method and applications
Costa Júnior,José Francisco Silva
Ultrasound
Shear wave
Shear modulus
Viscosity
UDmV
Kalman Filter
title_short Ultrasonic method of microvibration detection: part II - additional processing method and applications
title_full Ultrasonic method of microvibration detection: part II - additional processing method and applications
title_fullStr Ultrasonic method of microvibration detection: part II - additional processing method and applications
title_full_unstemmed Ultrasonic method of microvibration detection: part II - additional processing method and applications
title_sort Ultrasonic method of microvibration detection: part II - additional processing method and applications
author Costa Júnior,José Francisco Silva
author_facet Costa Júnior,José Francisco Silva
Machado,João Carlos
author_role author
author2 Machado,João Carlos
author2_role author
dc.contributor.author.fl_str_mv Costa Júnior,José Francisco Silva
Machado,João Carlos
dc.subject.por.fl_str_mv Ultrasound
Shear wave
Shear modulus
Viscosity
UDmV
Kalman Filter
topic Ultrasound
Shear wave
Shear modulus
Viscosity
UDmV
Kalman Filter
description Abstract Introduction In the last 28 years, the scientific community has been using elastography to evaluate the mechanical properties of biological tissue. The aim of this work was the optimization of the UDmV method, presented in Part I of the series, by means of modifying the technique employed to generate the reference sine and cosine functions, used for phase-quadrature demodulation, and determining how this modification improved the performance of the method. Additionally, the UDmV was employed to characterize the acoustic and mechanical properties of a 7% gelatin phantom. Methods A focused transducer, T F, with a nominal frequency of 2.25 MHz, was used to induce the shear waves, with frequency of 97.644 Hz. Then, the modified UDmV method was used to extract the phase and quadrature components from ultrasonic RF echo-signals collected from four positions along the propagation path of the shear wave, which allowed the investigation of the medium vibration caused by wave propagation. The phase velocity, c s, and attenuation, α s, of the phantom were measured and employed in the calculation of shear modulus, μ, and viscosity, η. Results The computational simulation demonstrated that the modification in UDmV method resulted in more accurate and precise estimates of the initial phases of the reference sinusoidal functions used for phase-quadrature demodulation. The values for c s and μ of 1.31 ± 0.01 m·s-1 and 1.66 ± 0.01 kPa, respectively, are very close to the values found in the literature (1.32 m·s-1 and 1.61 kPa) for the same material. Conclusion The UDmV method allowed estimating of the acoustic and viscoelastic parameters of phantom.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300218
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300218
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2446-4740.01617
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
dc.source.none.fl_str_mv Research on Biomedical Engineering v.33 n.3 2017
reponame:Research on Biomedical Engineering (Online)
instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron:SBEB
instname_str Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron_str SBEB
institution SBEB
reponame_str Research on Biomedical Engineering (Online)
collection Research on Biomedical Engineering (Online)
repository.name.fl_str_mv Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)
repository.mail.fl_str_mv ||rbe@rbejournal.org
_version_ 1752126288746774528