Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects

Detalhes bibliográficos
Autor(a) principal: Correa,J. D.
Data de Publicação: 2006
Outros Autores: Porras-Montenegro,N., Duque,C. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000300041
Resumo: Using a variational procedure for a hydrogenic donor-impurity we have investigated the influence of an axial magnetic field and hydrostatic pressure in the binding energy and the impurity-related photoionization cross-section in 1D and 0D GaAs low dimensional systems. Our results are given as a function of the radius, the impurity position, the polarization of the photon, the applied magnetic field, the normalized photon energy, and the hydrostatic pressure. In order to describe the gamma-X mixing in the Ga1-xAl xAs layer, we use a phenomenological procedure to describe the variation of the potential barrier that confines the carriers in the GaAs layer. Our results agree with previous theoretical investigations in the limit of atmospheric pressure. We found that the binding energy and the photoionization cross-section depend on the size of the structures, the potential well height, the hydrostatic pressure, and the magnetic field.
id SBF-2_16cf69988ef21f50fa32326da7a63862
oai_identifier_str oai:scielo:S0103-97332006000300041
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effectsMagnetic field and hydrostatic pressureHydrogenic donor-impurity1D and 0D GaAsUsing a variational procedure for a hydrogenic donor-impurity we have investigated the influence of an axial magnetic field and hydrostatic pressure in the binding energy and the impurity-related photoionization cross-section in 1D and 0D GaAs low dimensional systems. Our results are given as a function of the radius, the impurity position, the polarization of the photon, the applied magnetic field, the normalized photon energy, and the hydrostatic pressure. In order to describe the gamma-X mixing in the Ga1-xAl xAs layer, we use a phenomenological procedure to describe the variation of the potential barrier that confines the carriers in the GaAs layer. Our results agree with previous theoretical investigations in the limit of atmospheric pressure. We found that the binding energy and the photoionization cross-section depend on the size of the structures, the potential well height, the hydrostatic pressure, and the magnetic field.Sociedade Brasileira de Física2006-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000300041Brazilian Journal of Physics v.36 n.2a 2006reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332006000300041info:eu-repo/semantics/openAccessCorrea,J. D.Porras-Montenegro,N.Duque,C. A.eng2006-07-06T00:00:00Zoai:scielo:S0103-97332006000300041Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2006-07-06T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects
title Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects
spellingShingle Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects
Correa,J. D.
Magnetic field and hydrostatic pressure
Hydrogenic donor-impurity
1D and 0D GaAs
title_short Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects
title_full Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects
title_fullStr Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects
title_full_unstemmed Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects
title_sort Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects
author Correa,J. D.
author_facet Correa,J. D.
Porras-Montenegro,N.
Duque,C. A.
author_role author
author2 Porras-Montenegro,N.
Duque,C. A.
author2_role author
author
dc.contributor.author.fl_str_mv Correa,J. D.
Porras-Montenegro,N.
Duque,C. A.
dc.subject.por.fl_str_mv Magnetic field and hydrostatic pressure
Hydrogenic donor-impurity
1D and 0D GaAs
topic Magnetic field and hydrostatic pressure
Hydrogenic donor-impurity
1D and 0D GaAs
description Using a variational procedure for a hydrogenic donor-impurity we have investigated the influence of an axial magnetic field and hydrostatic pressure in the binding energy and the impurity-related photoionization cross-section in 1D and 0D GaAs low dimensional systems. Our results are given as a function of the radius, the impurity position, the polarization of the photon, the applied magnetic field, the normalized photon energy, and the hydrostatic pressure. In order to describe the gamma-X mixing in the Ga1-xAl xAs layer, we use a phenomenological procedure to describe the variation of the potential barrier that confines the carriers in the GaAs layer. Our results agree with previous theoretical investigations in the limit of atmospheric pressure. We found that the binding energy and the photoionization cross-section depend on the size of the structures, the potential well height, the hydrostatic pressure, and the magnetic field.
publishDate 2006
dc.date.none.fl_str_mv 2006-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000300041
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000300041
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332006000300041
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.36 n.2a 2006
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734862942601216