Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees

Detalhes bibliográficos
Autor(a) principal: Balota,Elcio Liborio
Data de Publicação: 2011
Outros Autores: Auler,Pedro Antonio Martins
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista brasileira de fruticultura (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452011000200037
Resumo: The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults) originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola). Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis) grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1) CT and annual cover crop with the leguminous Calopogonium mucunoides; (2) CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and cover crop with spontaneous B. humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.
id SBFRU-1_938ae26c763f68481fb3ebc1fcf135a5
oai_identifier_str oai:scielo:S0100-29452011000200037
network_acronym_str SBFRU-1
network_name_str Revista brasileira de fruticultura (Online)
repository_id_str
spelling Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange treesPotential mineralizationsoil managementvegetable covernutrient cyclingThe objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults) originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola). Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis) grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1) CT and annual cover crop with the leguminous Calopogonium mucunoides; (2) CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and cover crop with spontaneous B. humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.Sociedade Brasileira de Fruticultura2011-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452011000200037Revista Brasileira de Fruticultura v.33 n.2 2011reponame:Revista brasileira de fruticultura (Online)instname:Sociedade Brasileira de Fruticultura (SBF)instacron:SBFRU10.1590/S0100-29452011005000071info:eu-repo/semantics/openAccessBalota,Elcio LiborioAuler,Pedro Antonio Martinseng2011-07-25T00:00:00Zoai:scielo:S0100-29452011000200037Revistahttp://www.scielo.br/rbfhttps://old.scielo.br/oai/scielo-oai.phprbf@fcav.unesp.br||http://rbf.org.br/1806-99670100-2945opendoar:2011-07-25T00:00Revista brasileira de fruticultura (Online) - Sociedade Brasileira de Fruticultura (SBF)false
dc.title.none.fl_str_mv Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees
title Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees
spellingShingle Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees
Balota,Elcio Liborio
Potential mineralization
soil management
vegetable cover
nutrient cycling
title_short Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees
title_full Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees
title_fullStr Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees
title_full_unstemmed Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees
title_sort Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees
author Balota,Elcio Liborio
author_facet Balota,Elcio Liborio
Auler,Pedro Antonio Martins
author_role author
author2 Auler,Pedro Antonio Martins
author2_role author
dc.contributor.author.fl_str_mv Balota,Elcio Liborio
Auler,Pedro Antonio Martins
dc.subject.por.fl_str_mv Potential mineralization
soil management
vegetable cover
nutrient cycling
topic Potential mineralization
soil management
vegetable cover
nutrient cycling
description The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults) originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola). Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis) grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1) CT and annual cover crop with the leguminous Calopogonium mucunoides; (2) CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and cover crop with spontaneous B. humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.
publishDate 2011
dc.date.none.fl_str_mv 2011-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452011000200037
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452011000200037
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-29452011005000071
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Fruticultura
publisher.none.fl_str_mv Sociedade Brasileira de Fruticultura
dc.source.none.fl_str_mv Revista Brasileira de Fruticultura v.33 n.2 2011
reponame:Revista brasileira de fruticultura (Online)
instname:Sociedade Brasileira de Fruticultura (SBF)
instacron:SBFRU
instname_str Sociedade Brasileira de Fruticultura (SBF)
instacron_str SBFRU
institution SBFRU
reponame_str Revista brasileira de fruticultura (Online)
collection Revista brasileira de fruticultura (Online)
repository.name.fl_str_mv Revista brasileira de fruticultura (Online) - Sociedade Brasileira de Fruticultura (SBF)
repository.mail.fl_str_mv rbf@fcav.unesp.br||http://rbf.org.br/
_version_ 1752122490519289856