Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria

Detalhes bibliográficos
Autor(a) principal: Ugwu,Clifford C.
Data de Publicação: 2015
Outros Autores: Gomez-Sanz,Elena, Agbo,Ifeoma C., Torres,Carmen, Chah,Kennedy F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Microbiology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000300885
Resumo: This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, catpC221, and catpC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern.
id SBM-1_b5e9bc90b9af8315f84a00abea173cef
oai_identifier_str oai:scielo:S1517-83822015000300885
network_acronym_str SBM-1
network_name_str Brazilian Journal of Microbiology
repository_id_str
spelling Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeriamethicillin-resistantmannitol-fermentingstaphylococciquinolone resistancepigsThis study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, catpC221, and catpC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern.Sociedade Brasileira de Microbiologia2015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000300885Brazilian Journal of Microbiology v.46 n.3 2015reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1590/S1517-838246320140644info:eu-repo/semantics/openAccessUgwu,Clifford C.Gomez-Sanz,ElenaAgbo,Ifeoma C.Torres,CarmenChah,Kennedy F.eng2015-08-31T00:00:00Zoai:scielo:S1517-83822015000300885Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2015-08-31T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false
dc.title.none.fl_str_mv Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria
title Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria
spellingShingle Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria
Ugwu,Clifford C.
methicillin-resistant
mannitol-fermenting
staphylococci
quinolone resistance
pigs
title_short Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria
title_full Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria
title_fullStr Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria
title_full_unstemmed Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria
title_sort Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria
author Ugwu,Clifford C.
author_facet Ugwu,Clifford C.
Gomez-Sanz,Elena
Agbo,Ifeoma C.
Torres,Carmen
Chah,Kennedy F.
author_role author
author2 Gomez-Sanz,Elena
Agbo,Ifeoma C.
Torres,Carmen
Chah,Kennedy F.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ugwu,Clifford C.
Gomez-Sanz,Elena
Agbo,Ifeoma C.
Torres,Carmen
Chah,Kennedy F.
dc.subject.por.fl_str_mv methicillin-resistant
mannitol-fermenting
staphylococci
quinolone resistance
pigs
topic methicillin-resistant
mannitol-fermenting
staphylococci
quinolone resistance
pigs
description This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, catpC221, and catpC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000300885
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000300885
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1517-838246320140644
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
dc.source.none.fl_str_mv Brazilian Journal of Microbiology v.46 n.3 2015
reponame:Brazilian Journal of Microbiology
instname:Sociedade Brasileira de Microbiologia (SBM)
instacron:SBM
instname_str Sociedade Brasileira de Microbiologia (SBM)
instacron_str SBM
institution SBM
reponame_str Brazilian Journal of Microbiology
collection Brazilian Journal of Microbiology
repository.name.fl_str_mv Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)
repository.mail.fl_str_mv bjm@sbmicrobiologia.org.br||mbmartin@usp.br
_version_ 1752122207824248832