Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography

Detalhes bibliográficos
Autor(a) principal: BRUFATI,T.E.B.
Data de Publicação: 2015
Outros Autores: OLIVEIRA,S.P., BASSREI,A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000300185
Resumo: ABSTRACT We consider the conjugate gradient method for the normal equations in the solution of discrete ill-posed problems arising from seismic tomography. We use a linear approach of traveltime tomography that is characterized by an ill-conditioned linear system whose unknowns are the slownesses in each block of the computational domain. The algorithms considered in this work regularize the linear system by stopping the conjugate gradient method in an early iteration. They do not depend on the singular-value decomposition and represent an attractive and economic alternative for large-scale problems. We review two recently proposed stopping criteria and propose a modified stopping criterion that takes into account the oscillations in the approximate solution.
id SBMAC-1_9bbd588a9c43286426c200957ffb3362
oai_identifier_str oai:scielo:S2179-84512015000300185
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomographyseismic tomographyconjugate gradient methodtruncated iterationABSTRACT We consider the conjugate gradient method for the normal equations in the solution of discrete ill-posed problems arising from seismic tomography. We use a linear approach of traveltime tomography that is characterized by an ill-conditioned linear system whose unknowns are the slownesses in each block of the computational domain. The algorithms considered in this work regularize the linear system by stopping the conjugate gradient method in an early iteration. They do not depend on the singular-value decomposition and represent an attractive and economic alternative for large-scale problems. We review two recently proposed stopping criteria and propose a modified stopping criterion that takes into account the oscillations in the approximate solution.Sociedade Brasileira de Matemática Aplicada e Computacional2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000300185TEMA (São Carlos) v.16 n.3 2015reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2015.016.03.0185info:eu-repo/semantics/openAccessBRUFATI,T.E.B.OLIVEIRA,S.P.BASSREI,A.eng2016-02-11T00:00:00Zoai:scielo:S2179-84512015000300185Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2016-02-11T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography
title Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography
spellingShingle Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography
BRUFATI,T.E.B.
seismic tomography
conjugate gradient method
truncated iteration
title_short Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography
title_full Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography
title_fullStr Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography
title_full_unstemmed Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography
title_sort Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography
author BRUFATI,T.E.B.
author_facet BRUFATI,T.E.B.
OLIVEIRA,S.P.
BASSREI,A.
author_role author
author2 OLIVEIRA,S.P.
BASSREI,A.
author2_role author
author
dc.contributor.author.fl_str_mv BRUFATI,T.E.B.
OLIVEIRA,S.P.
BASSREI,A.
dc.subject.por.fl_str_mv seismic tomography
conjugate gradient method
truncated iteration
topic seismic tomography
conjugate gradient method
truncated iteration
description ABSTRACT We consider the conjugate gradient method for the normal equations in the solution of discrete ill-posed problems arising from seismic tomography. We use a linear approach of traveltime tomography that is characterized by an ill-conditioned linear system whose unknowns are the slownesses in each block of the computational domain. The algorithms considered in this work regularize the linear system by stopping the conjugate gradient method in an early iteration. They do not depend on the singular-value decomposition and represent an attractive and economic alternative for large-scale problems. We review two recently proposed stopping criteria and propose a modified stopping criterion that takes into account the oscillations in the approximate solution.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000300185
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000300185
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2015.016.03.0185
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.16 n.3 2015
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220125093888