In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018000901786 |
Resumo: | The interaction between HSA and two semi-synthetic potential anti-cancer agents derived from trans -dehydrocrotonin-methyl-hydrazone (MHDCTN) and phenyl-hydrazone (PHDCTN) was evaluated under physiological conditions at 296, 303 and 310 K by multi-spectroscopic techniques and molecular docking calculations. Steady state fluorescence quenching indicated a ground state association (static quenching) for both samples; however, the quenching induced by PHDCTN was not essentially static and can be accompanied by a dynamic quenching mechanism. The binding is strong (modified Stern-Volmer binding constant (Ka) ca. 105 M-1), causing a very weak perturbation on the secondary structure of the protein and there is just one main binding site for both samples (Sudlow’s site I). Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces for both samples. |
id |
SBQ-2_02463eac2402342eba109bfa12a65160 |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532018000901786 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic ClerodanesCroton cajucaratrans-dehydrocrotonin derivativeshuman serum albuminspectroscopymolecular dockingThe interaction between HSA and two semi-synthetic potential anti-cancer agents derived from trans -dehydrocrotonin-methyl-hydrazone (MHDCTN) and phenyl-hydrazone (PHDCTN) was evaluated under physiological conditions at 296, 303 and 310 K by multi-spectroscopic techniques and molecular docking calculations. Steady state fluorescence quenching indicated a ground state association (static quenching) for both samples; however, the quenching induced by PHDCTN was not essentially static and can be accompanied by a dynamic quenching mechanism. The binding is strong (modified Stern-Volmer binding constant (Ka) ca. 105 M-1), causing a very weak perturbation on the secondary structure of the protein and there is just one main binding site for both samples (Sudlow’s site I). Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces for both samples.Sociedade Brasileira de Química2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018000901786Journal of the Brazilian Chemical Society v.29 n.9 2018reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0103-5053.20180054info:eu-repo/semantics/openAccessChaves,Otávio A.Echevarria,ÁureaEsteves-Souza,AndressaMaciel,Maria A. M.Netto-Ferreira,José C.eng2018-08-16T00:00:00Zoai:scielo:S0103-50532018000901786Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2018-08-16T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes |
title |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes |
spellingShingle |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes Chaves,Otávio A. Croton cajucara trans-dehydrocrotonin derivatives human serum albumin spectroscopy molecular docking |
title_short |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes |
title_full |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes |
title_fullStr |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes |
title_full_unstemmed |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes |
title_sort |
In vitro Analysis of the Interaction between Human Serum Albumin and Semi-Synthetic Clerodanes |
author |
Chaves,Otávio A. |
author_facet |
Chaves,Otávio A. Echevarria,Áurea Esteves-Souza,Andressa Maciel,Maria A. M. Netto-Ferreira,José C. |
author_role |
author |
author2 |
Echevarria,Áurea Esteves-Souza,Andressa Maciel,Maria A. M. Netto-Ferreira,José C. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Chaves,Otávio A. Echevarria,Áurea Esteves-Souza,Andressa Maciel,Maria A. M. Netto-Ferreira,José C. |
dc.subject.por.fl_str_mv |
Croton cajucara trans-dehydrocrotonin derivatives human serum albumin spectroscopy molecular docking |
topic |
Croton cajucara trans-dehydrocrotonin derivatives human serum albumin spectroscopy molecular docking |
description |
The interaction between HSA and two semi-synthetic potential anti-cancer agents derived from trans -dehydrocrotonin-methyl-hydrazone (MHDCTN) and phenyl-hydrazone (PHDCTN) was evaluated under physiological conditions at 296, 303 and 310 K by multi-spectroscopic techniques and molecular docking calculations. Steady state fluorescence quenching indicated a ground state association (static quenching) for both samples; however, the quenching induced by PHDCTN was not essentially static and can be accompanied by a dynamic quenching mechanism. The binding is strong (modified Stern-Volmer binding constant (Ka) ca. 105 M-1), causing a very weak perturbation on the secondary structure of the protein and there is just one main binding site for both samples (Sudlow’s site I). Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces for both samples. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018000901786 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018000901786 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.21577/0103-5053.20180054 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.29 n.9 2018 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318180894507008 |